Detectionof Dynamic Execution Err orsin IBM
SystemAutomation’s Rule-BasedExpert System*

CarsterSinz?, ThomasLumpp®, JiurgenSchneidef and
WolfgangKichlin®
a SymbolicComputationGroup, ComputerScienceDepartmentlUniversity of Tubingen,
72076Tubingen,Germany
b |IBM GermanyDevelopmenteServelSystenManagement,71032Boblingen, Germany

Abstract

We formally verify aspectf the rule-basedxpertsystemof IBM’ s SystemAutomation
softwarefor IBM’ s zSeriegnmainframesStartingwith aformalizationof the expertsystem
in PropositionaDynamicLogic (PDL), we encodderminationanddeterminismproperties
in PDL andits extensionAPDL. We thentranslateour decisionproblemsto propositional
logic andapplyadwancedSAT techniquegor automategroofs.In orderto locatereal pro-
grambugsfor eachfailed proof attempt,we apply extra formalizationstepsandrepresent
propositionakrrorformulaein concisenormalform asBinary DecisionDiagramgBDDs).
In our experimentswe revealedresidualnon-terminatiorbugsin atestedprogramversion
closeto shipmentand,aftercorrectingthem,we formally verifiedthe absencef this class
of bugsin the productioncode.

Key words: formal methodsgexpertsystemsyerification,validation,PDL, SAT checking,
IBM SystemAutomation

1 Intr oduction

The useof knowledgebasesascomponentsvithin safetyor busines<ritical sys-
temshasbecomeanoreandmorewidespreadiuringthe199092], andhasattracted
renaved attentionin agent-basedthtelligentWebapplicationd9]. A very common
techniqueo storeknowledgein thesesystemss via rules. This form of expressing
knowledgehas—amongsbthers—theadwantagethat it employs a representation

* A preliminaryversionof this papemwaspresenteat the SecondAsia-Pacific Conference
on Quality Software (APAQS 2001)[32].

Preprintsubmittecdto InformationandSoftware Technology 28 August2002

thatresembleshe way expertstendto expressmostof their problemsolvingtech-
niques,namelyby situation-actiorrules[14].

However, thereis somepotentialfor errorsduringthe generatiorandmaintenance
of therules[24]. For example rule systemdack commonstructuringelementsuch
asthoseof objectorientedlanguagesandthey fall outsidecommonprogramming
technology On the otherhandtheir simplicity andlevel of abstractiorfacilitates
formalverification.Thereis, however, no generallyacceptedormalismfor thever-
ification of rule-basedsystemsso mary differenttechniquesave beenproposed
[1,23,25,28]andtheverificationof real-world industrialapplicationgs still rare.

In our paper we investicate the rule-basedexpert systemof IBM’s SystemAu-
tomation(SA) solutionfor OS/390! This systemis usedby major companiesf
practicallyall industrialsectorsto automatethe operationof high-availability ap-
plicationson their S/390 and zSeriesmainframecomputers? IBM mainframes
aretypically employedin clusterscalledParallel Sysple, for enhancedeliability.
SAstechnologyis intendedto be adaptedo furtherplatformsin nearfuture.

Our maingoalis the detectionof infinite computationgor loops in therule-based
centralcontrolinstanceof SA, called AutomationManager. The presencef such
infinite computationsyhich are causedoy faulty rules,may leadthe Automation
Managerto falsedecisions,or to oscillate betweendifferent computationstates,
disablingthe overall functionality of SA for the mainframe or evenfor the entire
Parallel Sysple.

CommonSoftware Engineeringerminologydistinguishedetweernvalidationand
verification[34]. The formeris concernedvith meetingcustomerexpectationsn

building the right system,the latter is concernedwith building the systemright,

accordingo its specificationFormal verificationof aprogrampP involvesproving,

usingmathematicahrgumentsthat P is consistentwith its (formal) specification.
This canonly work if the semanticof the programminglanguageare formally

defined,and the programis formally specifiedin a notationconsistentwith the
verificationtechnique$34].

In our case therulesareof a when-then form. The when-part consistsof a for-
mulaof afinite domainpropositionalogic, andthethen-partmanipulates global
systemstateby settingthevalueof afinite domainvariable.Our goalis to formally
validatesomeconsisteng propertieof a givenrule set,mainly termination.

The verification approachwe take consistsof the following steps:Startingwith
the necessaryormal descriptionof the actionsof the rule-systemfor which we

1 For moreinformationon SA seeht t p: / / ww. $390. i bm conf pr oduct s/ sa/
v21linfo. htm

2 zSeriesandz/OSarethe successoref the S/390mainframesandtheir operatingsystem
0S/390respectiely.

have chosenpropositionaldynamiclogic, we encodesomeconsisteng criteriain
an extensionof this logic, APDL. This leavesuswith proof obligationsfor either
a APDL modelchecler or theoremprover. We have chosernyet anotherapproach
by translatingour problems—ormpartially restrictedversionsof our problems—to
propositionalogic andthenapplyingstate-of-the-ar6AT-checlers[42] andBDD
implementation$33] that have alreadyshavn their successn neighboringdfields.
Thepurposeof theinterim PDL stepis to helpderive a correctformal modelof the
dynamicsof therule systemandof thevalidationrequirements.

In theory the automategroofscouldbe consideredhefinal stepin a verification.
In practice,the continuousdiscovery of errorsduring developmentis even more
importantthan one final verification, so for eacherror an intelligible description
is needed6]. Initially, a numberof non-genuinesrrorswere reported,dueto an
incompletelyspecifiedrule system.Implicit assumption®n possiblecomputation
stateghushadto be madeexplicit to allow the separatiorof genuineandspurious
errors.Also, the Booleanformulasdescribingthe error conditionshadto be con-
vertedinto humanreadableconcisenormalforms, usingBDDs, in orderto locate
theerrorsin thesource.

Working with a developmentreleaseof SA closeto shipmentwe could actually

locatesomeresidualfaultsthathadremainedeven after conventionalprofessional
testingandthat had also survived all codereviews due to the complity of the

rules’ when-parts.All of thesedeficiencieswhich were detectedthroughfailed

verificationattemptsweresubsequentlgonfirmedby simulationon a zSeriegest

systemandcouldbe eliminatedprior to productroll-out. We thenverifiedthatthe

final productdoesnot containany moreloopingdefectsof this class.

The remainderof this paperis organizedasfollows. In Section2, we give a de-
scriptionof IBM’s SystemAutomationandof the form of its rules.In Section3,
we derive our formalizationof the rule languagethis is the theoreticalcoreof the
paper In Section4, we describeour verificationtechniquesandtools. Section5
containsour experimentaresults.In Section6, we give asummaryaccountof our
industrialexperienceSection7 discusseselatedwork, andthe papercloseswith a
conclusionin Section8.

2 IBM’ s SystemAutomation for OS/390

Mission critical computersystemshave to be up andrunningreliably. Oftenthese
systemsareemployedin comple applicationenvironments andthusdemanchigh
skills and considerablé&knowledgefrom the operatingpersonnein the computer
centers Computerfailures,especiallyin the financialindustry cancauseconsid-
erablelossesFor instancea onehour dowvntime periodin a computercenterof a
bankcancausecostsof up to tenmillion dollars[36]. In thesehighly critical ervi-

ronments,|BM’s Parallel Sysplex clustersof zSeriesmainframesare frequently
employed to provide extremely high availability. The IBM zSeriesprovides an
availability of 99.999%within a z/OS Parallel Sysplex environment,or lessthan
5.3 minutesdowntime peryear

ThebasicideabehindIBM’ s SystemAutomation(SA) is to fully automatea com-
puter centerand thusto reducethe complity for the operatorsandto increase
the availability andreliability of businessapplicationslt allows to definecomple
softwareervironmentsn whichapplicationsareautomaticallystarted stoppedand
supervisedduring runtime.In the caseof anapplicationor systemfailure, SA can
reactimmediatelyandsolve the problemby restartingthe application,if necessary
on anothersystemin the cluster SA provides functionality like grouping which
allows to automatea collection of applicationsas onelogical unit. Furthermore,
dependencyanagementallows the definition of startandstoprelationshipssuch
as“start A beforeB.” Both groupingand dependengc managemenare provided
acrossan entire Parallel Sysplex. Of course SA providesfurtherfunctionality be-
yondthe scopeof this paper

As anexample let usconsideraflight resenation systemthatcanbe usedby hun-
dredsof usersn parallel.Suchanapplicationconsistf variousfunctionalcompo-
nents:a databasehat storesinformationaboutflight schedulestesenations,and
billing; a transactionmanagemensystemwhich guaranteesverall dataconsis-
teng/; a network infrastructurewith differentprotocolstacksandfirewalls; a web
sener ernvironmentfor the userinterface;and possiblyfurther systemdependent
componentsTo modelthis applicationin SA, we defineatop level group“flight
resenation” which haseachof the functionalcomponentasa member Sincethe
functional componentgshemseles consistof variousapplicationstheseare also
eachdefinedasgroups.In our example,partsof the transactiormanagemernsys-
tem may dependon the underlyingdatabase&o work properly Hence,we have a
start dependencyThereforeSA would startthe databasdirst in orderto startthe
transactiormanagemensystem.Startingthe databasehowever, may in turn de-
pendon systemspecificapplicationshaving beenstartedbefore.Similar relations
canhold whenstoppingapplicationgstopdependengy For example,it shouldnot
occurthatthedatabaseés stoppedeforethetransactiorsystems broughtdown. So
moving anapplicationwith complicatedstartandstopdependencieom onesys-
temin theclusterto anotherone(for examplein caseof amalfunction)canbequite
an elaboratetiask. Moreover, applicationsthat cannotor shouldnot be collocated
onthe samesystemcangenerateonflictingrequirements.

Taking into consideratiorthat a customersetupcan containseveral thousandap-
plicationswith a similar numberof dependenciest is clear that this cannotbe
controlledmanuallyarymore.

2.1 Outlineof the SAfor OS/390Softwake Architectuie

IBM SystemAutomationconsistof two logical parts, AutomationManagers (AM)

and AutomationAgents(AA). Thereis only oneactve AutomationManagerat a
time, the PrimaryAutomationManager(PAM). Additional SecondarnAutomation
ManagergSAM) canbe definedto preventa singlepoint of failure. Theseidle in

thebackgroundandonecantake overin errorsituationswith minimalinterruption.
The AutomationAgentsare locatedon eachvirtual systemin a Parallel Sysple
cluster Up to sixteenvirtual systemswith differentoperatingsystemsmay run on
eachphysicalsystemin thecluster

Fig. 1. GeneralOperationSchemeof IBM SystemAutomation.

The principlesof the SA architectureareillustratedin Figure 1. The Automation
Manageris the centralcontrolinstanceandactsasa Sysplex-wide decisionmaler.
It recevesmonitoringinformationfrom all automatioragentsconsistingof appli-
cationstatessystemstate andotherdata.Furtherinput sourcesarea userdefined
AutomationPolicy which describeghe operatingscenariowith all its applications
andtheir dependenciegindsystemoperatorsvho manuallystartandstopapplica-
tions.

Basedon monitoringinformationandthe userdefinedAutomationPolicy (seebe-
low), the AutomationManagerpossessea completepicture of the statusof the

Syspl. This enableghe AutomationManagetto derive a decisionfor eachappli-
cationwhethert hasto bestartedstoppedpr left in the stateit is. The Automation
Managerdoesnot performapplicationstartsandstopsitself, but sendscommands
to the agentof the systemon which the applicationcurrentlyis located.The agent
recevesthe orderand performsthe actualstart- or stop-processing-urthermore,
theagentdeliversmonitoringinformationto the manager

To achieve a high level of availability, both the ManagerAgent communication
andthe AutomationManagers internalprocessings implementedntop of IBM’s
transaction-baseahiddlevareMQSeries.

2.2 AutomationManager Architectue

The AutomationManagerreceves monitoring information from the Automation

Agentsandusesthis informationto computedifferentstatusvalues;it sendscom-

mands calledorders, to the AutomationAgentsto control their assignedapplica-
tions; andit containsthe expert systemcontrolling the Sysplex behaior. The au-

tomationmanageitinternally representseal entities,like applicationsor systems,
andvirtual entitieslik e applicationgroups(aggrgationsof multiple applications)
asabstracresouces As theexpertsystemdepend®n theresourcepresenin the

clusterandtheir dependencie$t hasto be useradaptabldo differentscenarios.

The expertsystemrepresentinghe whole clusteris composeaf a setof local ex-

pert systemdor eachresourceTo modeldependenciebetweenresourcesthese
expert systemscommunicatevia specialvariableswhich have their valuesauto-
maticallyexchangedy the AutomationManager Therule setof eachlocal expert
systemis composedf a multitude of predefinedspecial-purposeule sets,called
triggers. Thewhole bunchof predefinedriggerscontaininga few hundredrulesis

calledthe Logic Ded.

To achieve a high degreeof adaptability the AutomationManageris implemented
as a virtual machinewith its own instructionsetof a few hundredinstructions,
specializedn abstracresourcemanagemenilhereareinstructionsto specifyre-

sourcesandtheir dependenciegyr to changevariables’values;otherinstructions
starttheevaluationandapplicationof therules.Theuserspecifiesheresourceand
theirdependencie a so-calledAutomationPolicy. At initializationtime, the Au-

tomationManagerthereforeloadsa configurationfile containingthe Automation
Policy. This file containsvirtual machineinstructionsfor eachapplication,group,
andsystemMoreover, it includesinstructionsthatgenerateelationshipsetween
thoseabstractesourcesfor exampleto reflectstartor stopdependenciegbstract
resourcesand their relationshipsinternally build up a graphwhich is called the

Resouce Structue (seeFigure?2).

Eachabstractesourcemaintaingts own setof statevariablescontainingvariables

Fig. 2. ResourcestructureRepresentatiom the AutomationManager

for statusinformation, configurationspecificinformation, or local variablesused
for internalprocessingThe rulesare sharedbetweendifferentresourcewia trig-
gers.A local expertsystemgcontainedn the Resourcéstructureabove, is shavn in

Figure3.

Fig. 3. Local ExpertSystemof a Resource.

Executionof the whole expert systemnow works as follows. After the virtual
machineis initialized andthe resourcestructureis built up, the systemwaits for
change9f its variables.Thesemay occurfor eitherinternal or externalreasons.
Thelattermayhapperdueto avariableupdateprovidedby the AutomationAgent,
or by a humanoperatordirectly interactingwith SystemAutomation.The former
is triggeredby othervariablesof the sameresourcealteringtheir values,or by a
changeof a dependentariableof anotheresourceWhensucha changeoccurs,
all rulesarere-evaluated.This processs describedelow in greaterdetail.

The verification we presenthereis not concernedwith the verification of a cer

tain scenariorepresentedby someResourceStructure,but with the whole set of
predefinedules,the Logic Deck, itself.

2.3 TheAutomationManager’'s RuleBase

All correlationrulesareof theform

correlation <nane>:
when <f or nul a>
then <action list>

wheref or mul a is afinite domainformulawith atomicpropositionsof the form

<var> E <val >, , <val >
<var> NOT E <val >, , <val >

andthe usualBooleanconnectves AND, OR, and NOT. Variablenamesmay con-
tain alpha-numericatharacterandthe slash E denotesetmembershipTheonly

actionsin thethen-partwe areinterestedn areassignmenstatementsf theform

Set Vari abl e <var> = <val >. Otheractionsin the SA systemaremainly
usedfor eventlogging andto presentmessage$o the user We assumehat only

oneSet Var i abl e-actionis presenin eachrule’sactionlist. Thisis notenforced
by the instructionlanguageof the AutomationManagey but turnedout to be the
casefor theruleswe encountered-igure4 shavs atypical correlationrule.

correlation set/ st at us/ conmpound/ sati sfactory :
when status/conmpound NOT E Satisfactory
AND status/startable E Yes
AND ((status/observed E Avail able, WasAvail abl e
AND status/desired E Avail able
AND status/automation E Idle, |nternal
AND correl ation/external /stop/failed E false
)
OR
(status/observed E SoftDown, StandBy
AND st atus/desired E Unavail abl e
AND status/automation E Idle, Internal
)
)

then SetVari abl e status/conmpound = Satisfactory
Recor dVari abl eHi st ory status/conpound

Fig. 4. Exampleof a CorrelationRule.

To compute for example the compoundstateof aresourcerulesareevaluatedac-
cordingto thefollowing schemeAs soonasanabstractesourcenstancesvariable

changedts value theautomatiorhasto re-evaluateto reflectthis changeTherefore
themanagetakesall rulesof thetriggersthatarelinkedto theinstancanto consid-
eration:therulesaretestedoneby onewhethertheformulaof therule’s when-part
evaluatesto true underthe currentvariableassignmentlf this is the case the ac-
tion partis executed ,which may resultin further variablechangesrepeatingthe
processTheorderin whichrulesareevaluateds only partially specifiedusingpri-
ority schemesor rules.Thus,in ourformalizationwe do notmake any assumptions
abouttherule evaluationorderandconsiderit completelyunspecified.

Becauseesourcesave relationshipdik e startor stopdependencies statechange
on oneresourcecanleadto statechange®n otherresourcesThis is implemented
with relationshipcorrelations The basicideais to copy the value of a statevari-
ablefrom oneinstanceo anotherby which statevariablesrom differentresources
behaeidenticalandthuscanbeidentified. Thus,by meansof relationshipcorrela-
tions,communicatiorbetweernresourcess realized.This alsoimpliesthatchanges
ononeresourcecancausere-evaluationson others.

As seenabove, changeson the variables’valuesmay occur for two reasons{i)
by a “spontaneousthangeof volatile (transient,obsened) external variablesnot
controlledby the correlationrule systemor (ii) by executionof Set Var i abl e-
actionsin the then-part of a rule. We thereforepartition the set of variables
containedin the correlationrulesinto two disjoint sets:a setof computedstate
variables ,andasetof obseredexternalvariables , suchthat
comprlsesaxactlythosevarlableshatoccur|n arule’sactionpart,i.e. varlablesthat
may be changedoy rule execution.The valuesof externally controlled,obsenred
variablesaredeliveredto therule systemeitherby theresources automatioragent
or by the centralAutomationManagertitself.

3 Formalization of Correlation Rulesand ConsistencyProperties

We have selectedDL asformalizationlanguagefor the correlationrulesandthe
computationgloneby the AutomationManager Thereareseveral reasongor our
choice.First, correlationrules can easily be translatedo PDL, andthe resulting
formulaearequite comprehensible-urthermorethe employedrule-basedompu-
tation containsan indeterminismin that the exact order of rule evaluationis not
specified;PDL allows the easyformulation of, and reasoningabout,indetermin-
istic programs.Communicationbetweenresourcess not the key issuehere,so
theformalizationlanguageneednot reflectthis aspectFor the specificatiorof the
correlationruleswe only needconstructdrom PDL, whereadormalizationof the
terminationpropertyof the AutomationManagerequiresan extensionof ordinary
propositionadynamiclogic. Weemplogy PDL, which addsa divergenceoperator

to PDL to enablethe notion of infinite computation. PDL wasintroducedby
Streetf{37], anda similar extensionis dueto HarelandShermar{13].

Tablel
PDL symbolsandtheir semantic§adaptedrom [12]).

symbol name semantics

truth

falsity

negation
disjunction
conjunction
possiblepostcond.
necessaryostcond.

divergenceof

: consecutie exec.

nondet.choice

repetition

test

PDL allows reasoningaboutprogramgdenotedoy) andtheir properties,
andthereforecontaindanguageonstructdor programsaswell asfor propositional
formulae.Atomic propositiong) canbe combinedto compoundPDL
formulae() usingthe Booleanconnectves , and . Compositepro-
gramsarecomposeabut of atomicprogramausingthreedifferentconnectves:
denotegprogramsequencing, nondeterministichoice,and afinite, nonde-
terministicnumberof repetitionsof program . For aformula , theprogram
denoteghetestfor property ;i.e., proceedsf istrue,andfails otherwise.
The modal formulae and have the informal meaning“all terminating
executionsof program leadto a situationin which holds] respectiely “there
is a (terminating)programrun of afterwhich istrue? PDL addsthe con-
struct tothelanguageexpressinghattheprogram candiverge,i. e.,entera
non-haltingcomputation.

A summaryof the syntacticacomponent®f PDL andtheir semanticss shavnin

Tablel. PDL semanticss basedon the notionsof computationstatestransitions
betweerthem,andpropertieghathold in thesestatesThereforeJet denotethe
setof all (not further specified)computationstates, is a valuation
function, mappinga formulato the statesn whichit is valid, and

is a transitionfunction,mappinga program to the pairsof states suchthat

10

executionof program mayleadfrom state to state . Let resp.
betherestrictionsof resp. toatomicformulaeresp.programsThen
(resp.) is uniquelydeterminedoy (resp.) usingthesemanticatefinitions

of Tablel. Thetriple is calledaKripke frameandassignsneaning
to PDL expressionsFor afixed andastate , wewrite for ,
andsaythat satisfies . If for all states andall Kripkeframes we
saythat is valid, andwrite . If hasto be madeexplicit, we alsousethe
notations and

Someprogramconstructoccurringfrequentlyin corventionalprogrammingan-
guagesareexpressedn PDL as:

if then else
while do
repeat until

As anotherexample considerHoares partial correctnessssertion t
saysthatif program is startedn a statesatisfying , then,providedthat halts,
it doessoin a statewhere holds.In PDL the equivalentto Hoares assertions

We refer the readerto Harel'’s introductorychapteron PDL [12] for a morecom-
pleteelaboration.

3.1 Encodingof the Correlation Rulesandthe StatusComputation

Encodingof correlationrules and the formalizationof the AutomationManager
programis accomplishedn four steps:First, we encodethe variables finite do-
mainsin Booleanlogic; thenwe translatetherule’s actionsandtheir semanticgo
PDL; afterwardswe areableto give PDL encodingof completecorrelationrules;
andfinally we give a formal descriptionof programexecutionsof the rule-based
AutomationManager

3.1.1 Finite Domains

Eachvariable occurringin acorrelatiorrule cantake avalueof afinite domain

dependingon the variable.For our PDL encodingwe first needto decomposé¢he
finite domaingnto BooleanpropositionsWe thereforentroducenew propositional
variables for eachpossiblevalue of eachvariable , expressinghefact
thatvariable takesvalue . We thenneedadditionalrestrictionsexpressinghat
eachfinite domainvariabletakesexactly oneof its possiblevalues For ary set of

11

correlationrule variableswe thusgetanadditionalpropositionakestriction

Formulaesimilar to alsooccurin the context of propositionalencodingsof
planningproblemswherethey arereferredto aslinear encodingg18].

3.1.2 AtomicPrograms

The atomic programsof our formalizationare assignmenprograms,denotedby

, Where assignsvalue to variable . Eachassignmenpro-
gramis, of course deterministic,andafterits executionthe variablehasthe indi-
catedvalue.Othervariablesin arenot affected. Thereforethe following PDL
propertieshold for eachprogram andall propositions :

(1)
(2)
(3) for all and

We will denotethe conjunctionof thesepropositionsfor all atomic programsby

Usingtechnique$rom modalcorrespondencieory[39,40]we canderive proper

tiesof the programtransitionrelationimposedby therestriction . Therefore,
anadmissiblegorogramtransitionrelation for anatomicprogram must
have thefollowing properties:

for
which correspondo therespectre PDL formulae.
3.1.3 CorrelationRules
In thefollowing, we assumehatfor eachvariable-aluepair thereis at most
onerule with anactionsettingvariable to in itsthen-part.If thisis not

thecasethewhen-partsof ruleswith commonactionscanbemegeddisjunctiely.
To encodea correlationrule, its when-partis recursvely translatednto a Boolean
logic formulausingtransformation , which s definedfor the basecaseby

12

andextendedto comple formulaein the obviousway. Thus,for eachpair :
we obtainauniquetranslation of thewhen-partof theassociatedule

For the then-part we only have to consideractionssetting variables,which are
translatedoy to their correspondin@tomicPDL programs:

Givenarule’stranslatedvhen-part andits translatedhen-part , wegetas
PDL program for thatrule:

expressingthat the action of the then-part is executed,provided the when-part
holdsandthe variableis not alreadysetto the intendedvalue. The additionalre-
striction preventsrule executiongthatdo not produceary changeof variable
values correspondingo loopsof length1.

3.1.4 AutomationManager

We arenow ableto formally specifythe computationgperformedby the Automa-
tion Managemprogram As thereis norule evaluationorder theprogramustselects
ary rule, evaluatests formula, executeshe actionpartandstartsover again. The
single-stepAutomationManagemprogramS andthe AutomationManagemprogram
AM therefordook lik e this:

S

AM S

For eachSA resourcea programof the above kind is generatedEachAutomation
Manageiprogramrunsuntil nofurtherrulescanbeapplied(reflectedby thelasttest
in the AutomationManagermprogramAM), andis restartecassoonasan obsened
externalvariable changests value.

3.2 Consistencyropertiesof the CorrelationRule System

The computationrelation generatedy the correlationrules shouldbe functional
andterminating.For example,a statuscomputationshouldnot resultin different
valuesdependingon the exact order of rule application,andit shouldproducea

13

resultin afinite numberof computatiorsteps However, thereareexternalvariables
(obsenation variables)that may changetheir valuesduring computation For our
consisteng propertiesve assumall externalobseredvariablesto befixed.

We now turn to the formalizationof the two consisteng criteriaterminationand

functionality As abore, we denoteby AM, respectrely S, the partof the Automa-

tion Managemprogramthatdealswith full, respectrely single step,computations.
In the following, formula PREencodesommonpreconditiongor all consisteng

criteria. This includesthe finite domainrestrictions , the atomic program
specifications , andthe fixing of all obsenation variablesduring computa-
tion. We thereforedefine

PRE

Thelastpartof PRE,fixing the obsenation variables,alsohasa first orderpredi-
catelogic equivalent,whichis obtainedusingcorrespondenctheoryasfor
above. We get

for all

Now addressingonsistenyg propertiesthefollowing PDL formula, providedit
is valid, guaranteethatthereis no divergentcomputation:

PRE S (1)
To ensurefunctionality for a computationstartingin somestate,we needa final

resultthatis unique.So,if thereis aterminatingcomputatiorsequencef the Au-
tomationManagerall othercomputation$iave to endin the samestate:

PRE AM AM (2)

Confluenceof the rule system,i.e. the propertythat all ambiguitiesaboutwhich
rule shouldbe appliednext, eventuallyareirrelevantbecausehey leadto thesame
computatiorstate,is expressedsfollows:

PRE SIS SIS (3)

Thecorrespondindirst orderformulain this cases

S S S S

Notethatthis propertycannotbe expressedn ordinaryPDL [37].

14

Obviously, thereare mary more consisteng criteria that we will, however, not
elaborateon. Insteadwe concentrat®n the terminationproperty

As terminationis definedas the absenceof an infinite sequenceof consecutie

computationstateswe have to make the notion of a statemore precise.We will

useastatespacehatis isomorphicto theexponential-sizedin thenumberof pred-

icates)collapsedmodel.A state is anassignmento the propositionalvariables
, i.e.afunction

A state is saidto be properif it correctlyreflectsthe finite domainrestriction

, i.e.if is amodelof , or, equivalently in symbols, A
pair of states is calledan -transition if executionof therule thatsets
variable tovalue leadsfrom to

Definition 1 Let , and let be a Kripke frame A
pair of states is called an -transition, denotedby , when
for and
Lemma?2 Let . Thenthefollowing holds :
for all
Lemmaz2 clarifiessomepropertieof -transitions put its mainusewill belater

onin translating?DL formulaeto propositionalogic formulae.

Turning backto divergentcomputationsandnoting thatasthe numberof stateds
finite, all non-terminatingcomputationsarecausedy loopsin the programtransi-
tion graph.For example,the 2-loop

(4)

generatesn infinite computationoscillatingbetweernthe states and . As an-
otherexample,considerthe 4-loop

It involves two variablesand cannotbe decomposednto two simpler 2-loops.
Shaowving terminationof the Automation Managerprogramcan thus be accom-
plishedby proving the absencef -loopsfor all . Notethatthe case

Proofsof all lemmascanbefoundin theappendix.

15

in particularcoversthosesituationswherethe loopsare dueto an overlap of the
when-partsof two rulesfor the samevariable,i. e. when t
is thusof particularimportance.

To prove the non-eistenceof loops—aswell asthe otherconsisteng criteria—
directly within the PDL formalism,we canin principle distinguishtwo mainap-
proacheseitherby modelcheckingor by theoremproving. For thefirst approach,

a Kripke structurehasto be createdbasedon the elementaryproperties of
the atomicassignmenprogramsandon the validity of the propositions , con-
sideringtherestrictions . This stepbuilds a structurethatfulfills the general

preconditionPRE Thenit is checledwhetheror notthe PDL consistenyg criteria
(without preconditionsarefulfilled in thegeneratednodel.In thetheorenproving
formalism,we try to derive the consisteng criteriadirectly from thepreconditions.

We have chosenyet anotherway which translateshe PDL proof obligationsinto
purely propositionallogic formulae. This facilitatesthe applicationof adwanced

propositionalSAT-checlerswhich have shovn good performanceon a numberof
industrialstrengthproblemg(see for example,[3,20]).

3.3 Corversionto PropositionalSatisfiability
Corversionto a purely propositionalformalismrequireshandlingdifferent states
within oneformula.We userestrictionsto achieve this goal.

The properrestriction of apropositionafformula is definedasthe homo-
morphicextensionof the function

Thefollowing lemmaallows theformulationof propositionapropertiesoncerning
multiple computatiorstates.

Lemma3 Let . Then iff
The AutomationManageprogramterminatesf S. By definitionof

thesemanticof PDL andthe single-stepAutomationManagemprograms, this
is equialentto

16

for all . By usingDefinition 1 we getfor all
PRE (5)
We wantto specializeon 2-loopsnow. Accordingto Formula5, absencef 2-loops
is expressedy
PRE (6)

The two -transitionscan be performedprovided the following holds (by
Lemma2):

for all
Accordingto Lemmas3, thisis equialentto

which canbe furthersimplifiedto

Substitutingthis formula backinto Formula6 we obtain, after droppingthe now
superfluougxistentialquantificationover

PRE

As thepropertiesof atomicprogramsarenotneededary morenow, we canreplace
PREby . Simplificationandmoving the quantifiersto thefront yields

Thepropositionaformulaexpressingabsencef 2-loopsthereforereads

(7)
which hasto be valid for all , and . Similarly, the absenceof 3-loopsis
reflectedby thevalidity of
for all ,and . Theextensionto -loopsinvolving only onevariable is

obvious.Thegenerakaseof -loopsis morecomplicateddueto differenttypesof
loopsinvolving modificationof multiple finite domainvariables.

17

3.4 Geneslizationto -Loops

We now considerthe generalcaseof -loops, assumingthat the potentialloop
involvesstates .Wethenhave forall with ,

and . As in therestrictedcasesabove, by Lemmaz, the -
transitionscanbe performedprovidedthefollowing holds:

for (8a)
(8b)

for (8c)
for (8d)

for and (8e)

for (8f)

Of coursejt would bepossibleto testfor all possible -loopswhethertheformulae

above hold for the inclosedstates . But asthereare states
(and still properstates)the number SEQ of possible -loop
sequencegrows very quickly with SEQ (resp.). Moreover, most

of the statestrivially do not fulfill the above formulae,independentf the
involved. Thereforewe try to consideronly “sensible”’loops.

In thefollowing, a sequence of atomicprograms is
calledanactionsequenceEachactionsequence is relatedto awhole set of
transitionsequenceby

Notethatit is the actionsequence thatdeterminesvhetheror not all of the as-
sociatedrransitionsequenceform aloop. Thus,in the following we characterize
actionsequencethatmayleadto loops.

Definition 4 (Loop Candidate Sequence)Anactionsequence
with is a loop candidatesequenceprovided that the following two
criteria hold:

(1) Ther are eithernoneor at leasttwo actionsfor eat variable: For all

there exist and sud that .

(2) Betweentwo actionssettingvariable to the samevalue there mustbe
anotheractioninvolvingvariable : If and thenthere
existindices sud that
(@) and forsome and
(b) either or , and for some

18

Definition 5 (Last Action Set) Givenanactionsequence, thelastactionset
containsthoseactionsthat are thelast for that variablein the sequence:

Lemmab Let bealoop candidatesequencerhen

(9)

is satisfiablaff thereis aloopingtransitionsequence . Moreover, themodels
of are (starting) statesof loopingtransitionsequences.

Lemma?7 Let bean actionsequencelf , then is a loop candidate
sequence

Theorem8 is unsatisfiabldor all loop candidatesequences of length
iff the expertsystentontainsno -loops.

The maximallength of a loop that we have to searchfor is only limited by the
numberof differentcomputatiorstatesThus,we have to checkfor loopsof length
upto . It is evenpossibleto constructarule systemthatloops
but containsnoloopsof length . Considerfor example thegeneralization
of an -bit counter wherethe only loopinvolves statesln a practicalsetting,
theremaybeana priori limit onloop lengthsthatcanbe considerablysmaller

Comparedo the -fold productof the setof all statesthe setof loop candidate
sequencesf length cancausea substantiareductionon caseso be checled.
As mentionedabove, the numberof properstatesequencesf length is deter
minedby SEQ . The numberof action sequencesf length
is (asymptotically)alreadymuchlower with ~ ASEQ . For a fur-
ther analysisof the numberof loop candidatesequences -5, we make some
simplifying assumptionsLet be the maximal variable do-
main size, and be the numberof statevariables.Thenthe numberof
all loop candidatesequencesf length can be approximatedoy . The
numberof sequencesiolating criterion(1) of Definition4 canbeapproximatedy
, andthenumberof sequencegiolating criterion(2) by
— —.Thus, 'S

Whatis not consideredofar, but leadsto afurtherimprovementjs thatonly those
loop candidatesequenceblave to be examinedwhich do not containanotherdoop
candidatesequencasa subsequence.

19

3.5 RuleEvaluationOrder

Not all loopsdetectedy thepresenteanethodinevitably have to occurin anactual
implementationFor example,in the formulaeabore, the statesof the loop have
to be reachablestatesof the computation.With regard to obsenation variables,
we are not allowed to supposeary restrictionson possiblevariablevalues,so all
combinationshave to be consideredsiable for them.But somecomputationstates
may not occurdueto a pre-imposedule evaluationorder So,somestatesmay be
unreachableanddo not have to be considered.

We modeledheevaluationorderby assuminghatall ruleschangingvariableswith
higherpriority have beencomputedalready We denoteby thatthe evalua-
tion priority of is greaterthanthatof , i.e.,all rules areevaluatedbefore
ary rule settingvariable is consideredThen,to take into accountrule eval-
uationpriority, we canusethefollowing extendedformulainsteadof Formula(7)
to checkfor 2-loops:

(10)

This modificationnaturally extendsto the caseof 3-loopsand -loops.In our ex-
perimentshowever, we only consideredhe caseof 2-loops.

Note thatrule evaluationordermay counteractairnessof rule evaluation.l.e., by
fixing acertainrule evaluationordersomerulesmaynotbeevaluatedatall, because
of eitheraloop in the computationof valuesfor variableswith higherpriority, or
becausef two simultaneoushactvatedrules,wheredueto the fixed evaluation
order always the sameone rule is selected Assumingthat no suchloops occur
during the computationsof variableswith higher priority, the first casevanishes
andonly thesecondcaseremains.Thus,fairnessof rule selectiorhasto beassured
only for variableswith the samepriority.

4 Verification Techniques

We will now describethe techniquesve usedto prove the propositionalformulae
of the last section.We also shav how the countermodelsthat appearin casea
propositioncouldnot be proved canbe mademoreintelligible.

Davis-Putnam-Style Prover. We useda Davis-Putnam-styl€DP) prover to shav
the unsatisfiabilityof the negationsof the 2-loop formulae.The prover wasdevel-
opedin the SymbolicComputatiorgroupatthe Universityof Tubingenin collabo-
rationwith A. Kaiserfor checkingindustrialproductdocumentatiorfl6,20,31].In

20

contrastto otherDP implementation$21,42], it is specificallygearedowardsin-
dustrialstrengthinputs.Firstbecausé& doesnotrequirethe (potentiallyverylarge)
inputto bein conjunctve normalform. Secondit allows thedirectspecificatiorof

-out-of- -constructghatfrequentlyoccurin practicalapplicationsjn our casen
the translationof the finite domainrestriction to Booleanlogic. More pre-
cisely thereisasetof -aryselectioropemators , suchthat holds
whenexactly oneof the formulae holds.Using this selectionoperatoy
andassuminghatthe variabledomainsareordered,.e. , we
canrestate as

Soinsteadof the original formula , Which is quadraticin the domainsizes

, we just have to deal with a linearsize formula in the extendedlanguage.
Third, it containsan explanationcomponenthat helpsto pinpointsmall unsatisfi-
ablesubset®of theinput.

Today’s SAT-solwers are often very efficient in solving encodingsof real-world

problems,wherethey are capableof handlingproblemscontainingup to several
thousandof variables.On the other hand,asthe SAT problemis NP complete,
thereare obviously muchharderSAT instancesven at smallersizes.However, it

turnedout thatthey occurinfrequentlyin practice[19]. Our experimentscorrobo-
ratethis obsenation.

BDD-basedApproach.Anothertechniqueo prove propositionaformulaeareBi-
nary DecisionDiagrams(BDDs). BDDs uniquelyrepresenBooleanfunctionsas
binary graphs,so that validity canbe checled in constantime, oncethe BDD is
built. BDDs weresuccessfullyemployedin the realmof hardwareverification[5]
whereone of the mostcommonapplicationsis to prove the equivalenceof two
hardwaredesignsSo,in additionto DP solvers,we alsoexperimentedvith BDDs,
wherewe usedSomenzis CU DecisionDiagrampackagd33].

The Davis-Putnamalgorithm producesasoutputeither“satisfiable” or “unsatisfi-
able] in the former casepossiblyaccompaniedby a list of models(examples).In
contrasto this,BDD constructiomalwaysresultsin aformula.Soif the problemis
satisfiablej.e.notequvalentto (false),theresultingBDD encodesll satisfiable
instancesThis is a big advantageover DP-style SAT-solvers,asit allows further
inspectionof the resultingformula. Hence,if the outcome“unsatisfiable’needs
explanation theminimal unsatisfiablesubset@scomputedy our DP implementa-
tion areneededptherwisewe needaconciserepresentationf thesatisfiablecases,
muchasby BDDs. In our applicationof proving terminationof the expertsystem,
we werethusableto furthersimplify the countermodelrepresentatioof thecases
in which the expertsystemstartsoscillatingbetweendifferentcomputatiorstates.

Thesimplificationwe appliedto Formulal0 distinguishedvetweemmainvariables
andsidevariables Main variablesarethosevariablesoccurringin therules
resp. . Theseare of specialimportance,astheseare variablesof the rules

21

making up the possible2-loop. All variablesoccurringonly in orin rules
with higher priority, i.e. in with , are side variables,which canbe
thoughtof as describingthe ervironmentin which the loop possiblyoccurs.In
ordernotto confuseheusemwith additionalvariablesrrelevantto theoccurrancef
theloop, we thereforeappliedexistentialabstractiorover all sidevariables.Thus,
we areonly interestedn assignment$o main variablesthat canin someway be
extendedo all sidevariableswhile still fulfilling thesideconditionsof Formulal0.

More formally, we generated quantifiedBooleanformula where is For-
mula(10)and containsexactly thosevariablesnotappearingn and ,
i.e. Var Var

It would be interestingto comparethe efficiencgy of the two approachesor gen-
eratingproofs of consisteng propertiesof expert systemsn general,asthe two
methodshave shovn advantagesn differing fields[38]. In our experimentshow-
ever, theformulaeweretoo smallto obsere asignificiantdiscrepang in efficiengy.

Implicit Assumptionson Obselvation Variables. Not all combinationsf possi-
ble valuesfor obsenationvariablesreally do occur But which of themarepossible
andwhich arenot is not laid down in the AutomationManagers expert system.
For our verificationtaskwe thusaddedsomefurther restrictionsto the set
reflectingcaseshat do not occurin practice.Thesecaseswere specifiedby SA
expertsfrom IBM afteraninvestigationof the countermodels.

5 Experimental Results

We conductedexperimentswith a subsebf therulesof the AutomationManagers
Logic Deckandexemplarilyinvestigatedthe41 rulesfor thecompoundstatuscom-
putation.The compoundstatusindicatesthe overall statusof aresourcedepending
onits automatiorgoal, the actualstate,andon the statesof otherresourceslt can
take any of sevendifferentvalues,sowe hadto perform21 proofsof Formula(10)
to shav the absenceof 2-loops. Insteadof proving theseformulae directly, we
testedtheir negationsfor unsatisfiability

We usedour DP-styleproverimplementatiorto checkthe generatedormulae.As
ourimplementatiorallows specialselect- -out-of- -construct§16], formulasizes
couldbekeptsmall.All formulaecontained’2 propositionalariables39 of them
were statevariables,33 obsenation variables.The generatedropositionallogic
formulaecontainedaround1500atomicsymbols.Proofsor countermodelsfor all
formulaewerefoundin underasecondinitially, sevenof the2linstancesveresat-
isfiable,eachindicatinga possiblenon-terminatingcomputationHowever, further
examinationshavedthatmostof thesecasesannotoccurin practice.Thereason
for thesefalseerrorreadingdiesin anincompleteformalizationof therule system.

22

Implicit assumptionsnwhichstatesarereachabldave to bemadeexplicit in order
to achieve practicallyusefulresults.Thus,we addedthe abose-mentionedurther
restrictionson obsenationvariableswhich broughtdown the numberof inconsis-
tenciesto three.For thesethreecasesve generatedBDDs of the 2-loop-formulae.
The timesto build up the BDDs again were undera second.For simplification,
we thenmadeuseof the BDD representatioby applyingexistentialabstractiorto
variablesnot occurringin the rules’ when-parts.This helpedgreatlyto find outin
which situationsaloop occursandthusfacilitatedcorrectionof therules.

All of our detected®-loopswerereproducedy emulationon azSeriedestsystem
andresultedin a modificationof the final product.Thusthe final versionis veri-
fied to containno 2-loop-errors.So, by identifying real defects,we could further
increasehereliability of the AutomationManager

First correlationrule:

correlation set/ st at us/ conpound/ degr aded :
when st atus/ conpound NOT E Degraded
AND status/automation E ldle, Internal
AND ((status/desired E Available
AND st at us/ observed E Degraded
AND status/startable E Yes
)
oR
(status/observed E Starting, Stopping
AND correl ation/ group/|IsAutomating NOT E True
AND correl ation/external /stop/failed E Fal se
)
)
then Set Vari abl e st atus/conpound = Degraded

Secondcorrelationrule:

correlation set/ st at us/ conpound/ probl em :
when stat us/ conpound NOT E Problem
AND (status/observed E Problem
OR status/automation E Problem
OR (status/automation E Idle, Internal
AND (status/startable E No
OR status/observed E Harddown)
)
OR (status/observed E Avail abl e, Degraded, Problem
Starting, Stopping, WasAvail
AND correlation/external/stop/failed E True
)
)
AND test.Ovar E Of
then SetVari abl e status/conpound = Probl em

Variablesettings:

status/startable = Yes,

st at us/ observed = Degraded,
status/desired = Avail abl e,
status/automation = Internal,

test.Ovar = Of,

correl ation/external /stop/failed = True,
correl ati on/ group/ | sAutonating = Fal se,

Fig. 5. CorrelationRulesandVariableSettingsCausing2-Loop.

23

Figure5 furtherillustratestheresultsof ourexperimentsTheupperpartshavs two
correlationrulesfor which a 2-loopwasdetectedThegenerategropositionalver-
ification conditionfor theserules,accordingto Formula(10), containsencodings
of bothrules’ when-parts(on theright handsideof theimplication),aswell asthe
remaining34 rules(aspartof theleft handsideof theimplication). We alsoadded
furtherrestrictionson obsenationvariablesfor example ,

Runningour DP-styleprover for this particularcasegenerates list of 301 models
providing examplesfor which Formula (10) doesnot hold. One of thesemodels
consistsof the following propositionalvariablessetto true, and all otherssetto
false:

_fd._extstopdel ayedtrue correl ati oncan_bestarted correl ati on_external stopfailed
correl ati on.may_send.orders correl ati on_set _st at us_conpound_degr aded

correl ati on_set _st at us_conpound_pr obl em f| ag-aut omat i on_di sabl ed

fl ag_expect _ext stop_yes fl ag-external stop.al ways fl ag-hol d_.no

group_nat ure_basi c request desiredstatus_da request _desiredstatus._origin
status_aut omation. nternal status_conpound.autonmating status_desired.avail able

st at us_observed._degraded status_observed.null status.startableyes test_Ovar_off

Usingthe BDD representationf the 2-loop-formulaandexistentially quantifying
over all variablesthatdo no occurin thewhen-partsof thetwo correlationrulesof
Figure5, we arrive at oneremainingcase:

status_startabl eyes status_observed.degraded status._desired._avail able
status_automation.internal test_Ovar_off correl ationexternal stopfailed

The variable setting correspondingo this caseis also shavn at the bottom of
Figure5. So whenthe variablesare setasindicated,SA's rule systemoscillates
betweenthe statewherest at us_conpound = Degr aded andthe statewith
st at us_conmpound = Pr obl em SystemAutomationexpertsatIBM corrected
this loop by modifying the secondcorrelationrule.

In the othertwo situationswhere 2-loops have shavn up, three casesremained
to consider(as opposedto onein the exampleabove) after applicationof BDD
simplificationtechniques.

Namesfor propositionalvariablesare constructedy replacingslashedy underscores
andappendinghevariablesvaluewith anunderscoréo thefinite domains variablename.
The translationof Booleanfinite domainvariables(i.e. with domains True, False) is
simplified,asshouldbeobvious.

24

6 Industrial ExperiencesSummary

The performanceandimpactof formal methodsn industrialsettingshasbeenthe
subjectof mary articles,see[4,6,11,26],for example.Hall [11], and Bowen and
Hinchey [4], have reportedsuccesstoriesandhave usedtheseto arguethatwidely
heldconcernsandresenationsaboutformal methodsareindeedmythsthatneedto
bedispelled FentonandPflegyer have takena morecautiousview ([7], embedded
in [26]). Someof their concernis thatmostwork to datehasbeenon specification,
thatwe mustbetterunderstandiow to chooseamongthe mary competingformal
methodsandthatthereis still no hardevidenceto shov that formal methodsare
costeffective, or that sufficient numbersof developersanduserscanbetrainedin
them.

Combiningexperiencesrom thisprojectandourpreviousBIS projectfor proving
consisteng assertion$or automotve productdata[20,31],we now reporton some
of our own findings, and we try to relatethemto the well-known 7+7 “myths”
[4,11]. Notethatboth projectsareconcernedvith finding andremoving defectsin
mostlyfinishedproductgBIS is concernedvith dataconsisteng only). Sinceboth
originatedin anorderfrom industry we would at oncearguethatthey helpdispel
myths6 and7, becaus@urformal methodsvereacceptabléo usersandwereused
on real software, resp.real data.In both casesthe methodswere alsonecessary
dispellingmyth 12, becauseve foundresidualbugs;however, it canbe arguedthat
thebugswereunlikely to surface.

Verification, validation, and debugging. First, let usturnto Hall’'s myth 1: “For-
mal methodscanguaranteehat softwareis perfect. Formal verificationis attrac-
tive becauseas Dijkstra hasobsenred, it can prove the absenceof errorswhile
testingcanonly prove their presenceThe notion of formal verificationcarriesthe
connotatiorof completecorrectnessFirst,aformal model andaspecification
are produced,andthenit is shovn that , l.e., holds of
In contrastyalidationmustneedsremainincomplete becausehe users expecta-
tions areinformal. However, providing completeformal specificationsandformal
semanticss very hardandtime consumingfor humansand masteringthe ensu-
ing proofsis just ashardfor theoremprovers,whetherhumanor mechanicalln
rule-basedystemsat leastthe semanticgpartis manageablejueto their proxim-
ity to logic formalisms.Completeformal specificationshowever, just do not exist
in practice,or they arefeasibleonly for a small subsetof the entire system.lt is
only possibleto capturea few of the requirementgormally, asaset of theo-
remswhich arenecessaryor the correctnes®f . Hencethe distinctionbetween
validationandverificationbeginsto blur becauseall we canhopefor is theformal
verificationof , whichamountgo formalvalidation.Thereforet is alreadyinter-
estingto applyformalverificationtechniqueso selectedypesof theoremsyhich,

Baubarlkeits-Informations-Systerftonstructibilityinformationsystem)

25

if they hold, will greatlyincreaseour confidencen the system.

Both our projectsareaboutfinding bugsin existing systemslIn practice,eventhe
completeverificationof a program is lessimportantthanthe discovery of pro-
grambugs,or errors.This is becausehe successfuberificationwill only happen
once,at the end of the developmentof , whereaserrorsmustbe found during
theentiredevelopmentprocesdeadingupto theverification. Thefinal verification,
provingthat is freeof errorsof thistype,is very niceto have,butin practicedue
to the mary additionalinformal requirement@ndparametersi never meanshat

is totally correct[11]. Sotherealissueis deluggingratherthanverificationin
thepuresense.

Businessobjectives.Total correctnesss practicallynever achievable,sothe busi-
nessobjective is usuallynot total correctnesslt is to make money by deliveringa
productwhich hasthe bestquality thatcanbe afforded. Sincequality is important,
elaborateguality assurancenethodswill alreadybe in place(which dispelsmyth
10 that formal methodsreplacetraditional ones).Formal methodsare expensve
to apply becausehey needhighly trainedpersonnelconfirmingmyth 4). If other
methodsareableto deliver the necessaryuality, they will mostlikely be cheaper
andwin.

BusinessprocessesQuality assurances only one stepin the businessprocess
of producinga product. Establishedsuccessfubusinessprocessesire extremely
valuableand expensve to changebecausef mary interdependenissuesAt the
sametime they may only be laid down informally. It is very difficult to comeup
with a formal specificationfor even a part of sucha businessprocessandit is
almostimpossibleto changethe processNew methods suchasformal methods,
must be seamlesslyntegratedinto the processand function with the established
work force.As Craigen,GerhartandRalstonhave obsered|[6]: “Industry will not
abandonits currentpracticeshputit is willing to augmentindenhancéts practices.

Time and efficiency Thetime of all personnelntegratedinto a businesgrocess
is exceedinglyexpensve. Thereis little sparetime for experimentationFormal
methodsamustrunvery efficiently. While it maybeof little concerrhow muchtime
it takesto prove anew mathematicatheorem(once),it is of greatconcernwhethera
humanoperatoiis delayedor minutesevery time aformal methodis actvatedin a
developmentycle. Theindustrialpropositionaformulaewe facedwereextremely
large for BIS (hundredsof thousandsf terms),but surprisingly “harmless”for
SAT checking.However, the formulaemay be generatecautomaticallyfrom real
data,soagreatmary of themmustbe handledefficiently. At onetime, corversion
to conjunctve normal form was a real problemfor BIS until a new prover [16]
wasdeveloped.We alsoparallelizedour algorithms[30], but we did not yet apply
parallelismin industry

Meaningful explanation. Sincedehuggingis therealissueratherthanverification,

26

evenfailedvalidationscanbe extremelyuseful,providedthatthey reveal costlyer-
rors that establishegrocessesail to expose.Thereforewe cannottake “no” for
anonly answerA failed proofis usefulonly if it canbe explainedin anintelligi-
ble way. It hasbeenobseredin this contet that explanationis a sadly neglected
areaof automatedleduction[6]. Furthermoreit mustbepossibleto locatethe cor-
respondingdefectsin the sourceprogramreadily from the explanation.Formulas
representingeal errorsmustbe succinctandintelligible. For SA, we normalized
themusingBDDs; in BIS, they areway beyondwhatBDDs canhandle,soa spe-
cial explanationcomponentvas developedby A. Kaiserto find those(very few)
constraintsand variableswhich causethe hugeconstraintsetsof BIS to become
unsatisfiablg17].

Due to incompleteformalizationsof the businessprocessthere may be failed
proofsthatdo not correspondo real (application)errors(falsepositives).Nobody
hastime to sift throughreamsof falsepositves.For bothBIS andSA we hadto go
backandaddextra axiomsto our modelsto excludefalsepositves.Falsenegatives
(a failure to captureproblems)can seriouslyunderminethe credibility of formal
methodsso only well dehuggedverificationsystemsshouldbe deployed; thereis
notime for experimentatiorandonly afinite amountof goodwill outthere.

7 RelatedWork

Therearetwo classe®f relatedwork, namelyin Formal Methodsin generaland
in verifying expertsystemsn particular Examplesof theformerhave appearedn
IEEE Computer IEEE Softwae, andIEEE Transactionn Softwae Engineering
suchasl[4,6,11,26] CraigenGerhartandRalston6] pointoutthatformalmethods
canbeusedto assurghatcodeconforms;ithata simpledescriptionof thesemantics
of thelanguages of relevance;thatcheclersof decidabldragmentsf theoriesare
important;that feedbackon failed proofsis sorelyneededandthat formal meth-
ods needto augmentindustry’s practices.Thesepoints are all confirmedby our
experience henceour emphasion a simplelogic with a highly efficient checler
augmentedy explanationcomponentsWe alsofind it highly interestingthatwe
have foundtwo industrialapplicationsvherepropositionalogic is genuinelyused
sothatwe couldadd SAT-basedverificationcomponentsvith tolerableeffort.

On the otherhand,mary differentproceduregor verifying rule basedexpert sys-
temsareproposedgcovering a broadrangeof methodd8,10,23,24,27-29,41Un-
fortunately the underlyingsemanticsof the rulesis not uniform: somesystems
interpretrulespurely declaratve aslogical implications[25,28], whereasn other
systemguleshave an operationakemanticsin which factsareaddedor removed
from a pool of working knowledge(statespacemodel)[8,14,27].Grumbeg et al.
consideran even more general(programming)systemof (iterated)guardedcom-
mandg10].

27

Moreover, the inferencemechanisms not standardizedHere, we want to point
outjusttwo differentiatingaspectsforward-chainingvs. backward reasoningand
sequentials. parallelrule execution.Whereaghe former usuallydoesnot have a
directimpacton rule semanticsthe latter caninduceconsiderablalifferencesin

the parallelexecutionschemethe IF-statement®f all rulesare evaluated,andall

matchingactionsarethenexecutedn parallel.In the sequentiaketting,oneof the
matchingactionsis chosermon-deterministicallyinduceddifferenceson possible
inconsistenciewill be pointedoutbelow.

Obviously—reflectingthe diversity in expert systems’semantics—theres a huge
variety of differenterror detectionand verification methods.The typesof errors
underconsiderationhowever, arerelatively uniform, andit is graduallybecom-
ing commonpracticeto classifytheminto four groups(see[22,28]): redundany,
conflict,incompletenesgndcircularity errors.

Redundantules(or partsof rules)canberemovedfrom the expertsystemwithout
affecting its deductve power. Redundantules can arise becauseof duplication,
subsumptionunnecessarpartsin the IF statementspr more complicatedforms
suchaschainedredundanyg [28].

Conflictsarisewhencontradictoryfactscanbe derved from the knowledgebase.
In systemsnterpretingrulesaslogical implicationsconflicts directly correspond
to logical inconsistenciedn the hypemgraphapproactof Ramaswamy et al. [28],
whereno negationscanoccut additionalconsisteng conditions(constraintsiare
usedfor expressingorbiddenvariablecombinationsSystemsmploying the state
spacemodelreveal a differentperspectie of conflicts.In modelswith sequential
execution,wherenegationscorrespondo theabsencef factsin theworking mem-
ory, noconflictscanoccur asit is impossibl€for afactto besimultaneouslypresent
andnot presentln this setting,inconsistenciesire all dueto additionalintegrity
constraintson the variables—ass the casein the hypemgraphapproachParallel
execution,ontheotherhand,canactvatecomplementargctions,oneerasingand
the othersettingthe samefact. Thus,conflictsbetweenan actionandits negation
candirectly occurin this setting.

Incompletenessdealswith factsthat the expert systemcannotderie, but is sup-
posedto do so. Obviously, this is morea validationthana verificationissue.Of-
tenincompleteness subdvidedinto threeerror cateyories[22,29]: missingrules,
dead-endgrules that produceno factsthat are further needed)and unreachable
goals(whentheantecedendf arule cannever be satisfied).

Circularity is mainly understoodn thesamesenseasin our paper but in thepurely
declaratve interpretation this kind of circularity cannotoccur Therefore,in the
rules-as-implicationpicturecircularity usuallyrefersto premise®f arule thatcan
bederivedby therule system[28].

Among the rareindustrial verificationsof expert systemsve wantto mentionthe

28

following: Spreeuwenbegretal. presenttool to verify knowledgebasesuilt with
ComputerAssociates Aion system([9]; they alsotreatreal-life applications for
examplefor the PostbankNederlandBV’ s assessmerknowledgebase[35]. Rep-
resentatie of mary othersimilar projects,Horl andAichernig[15] formalizedand
verifieda setof testcasedor anair traffic voice communicatiorsystem.

8 Conclusion

In this paper we reportedon an additionalquality assuranceffort involving for-
mal methodson an industrial systemcloseto shipment.By formalizing the IBM
SA AutomationManagers rule-based=xpert systemwe could prove a restricted
non-loopingpropertyfor a part of the rule system,andwe could locateprogram
bugsfrom failed proof attempts After modellingthe rule actionsand consisteng
propertiesin PDL, we convertedthemto a setof propositionalSAT properties
thatcurrentSAT-checkingtechniquesaneasilyhandle.

As aninterestingtaskfor the future we seeanintegratedverificationapproactHor
boththehigh-level dependengconditionsonresourcesndthelow-level Automa-
tion Managersrule-systemAs thehigh-level conditionscanbeeditedby SA users,
verification cannotremaina stepin the productdevelopmentcycle, but becomes
partof theusers’administratiorwork, with all theinduceddemandshis entailson
theverificationprocessuchasuserfriendlinessor fully automatigproofs.

In this work, we have found a casein industry where formal methodscould be
broughtin very lateto help delug analmostfinishedproduct.This wasmadepos-
sible becausehe programconsistsof a relatively abstractrule systemgiven in
termsof (almost)propositionalogic. Therewasstill asubstantialbut manageable,
formal modelling effort, describedin Section3 above. Sincewe mainly stayed
within propositionalBoolean)logic, we hadpowerful industrialstrengthdecision
proceduresat our disposal:advancedSAT-checkingalgorithmsand normalform
representationssingBDDs. Thereis even someleevay here,becauseave did not
haveto resortto our parallelSAT-checler [30] yet. In thosecasesvhereour valida-
tion lemmagdid nothold, we representetheerrorconditionsasconciseBDDs and
couldthentracethe problembackfrom themodelto errorstatesf theoriginalrule
system.We alsoconsiderit animportantobsenationthatin practicerule systems
may beincompletelyspecifiedandthatformalizationrequiresto make implicit as-
sumptionsexplicit in orderto avoid meaninglessesults(falsepositives).

We concludethatFormalMethodsneednotall beaboutspecificationandthatthey
canevenbeappliedvery latein industrialprojectsto dehug, respectrely validate,
importantaspectsprovided the projectalreadycontainsabstractinterfacesfrom
whichthevalidationcanproceed.

29

References

[1] R.Agarwal andM. Tanniru. A Petri-netbasedapproactfor verifying theintegrity of
productionsystemslntl. J. Man-Madine Studies36:447-4681992.

[2] E. Andert. Automatedknowledge-basevalidation. In Proc. AAAI Workshopon
VerificationandValidation of ExpertSystemspagesl22—-127 July 1992.

[3] A. Biere,A. Cimatti,E. Clarke,andY. Zhu. SymbolicmodelcheckingwithoutBDDs.
In Tools and Algorithmsfor the Analysisand Constructionof SystemgTACAS’'99)
numberl579in LNCS. SpringefVerlag,1999.

[4] J.RBowenandM.G. Hinchegy. Sevenmoremythsof formal methods|EEE Softwae,
12(4):34-41July 1995.

[5] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams.ACM ComputingSurves, 24(3):293—-318Septembefl992.

[6] D.CraigenS.GerhartandT. Ralston.Formalmethodseality check:industrialusage.
IEEE Trans.on Softwae Eng, 21(2):90-98Februaryl995.

[7] N. FentonandS.L. Pflegger Canformal methodsalwaysdeliver? IEEE Computer
30(2):34,February1997.

[8] R.F Gamble,G.-C. Ball, and H.C. Cunningham. Applying formal verification
methodgo rule-basegrograms.intl. J. ExpertSystems7(3):203—-2391994.

[9] S.GaroneandN.Buck.Capturing ReusingandApplyingKnowledg for Competitive
Advantae: ComputerAssociates Aion. InternationalDataCorporation,2000. IDC
White Paper

[10] O. Grumbeg, N. FrancezandJ. A. Makowsky. A proof rule for fair terminationof
guardeccommandsinformationand Control, 66(1/2):83-1021985.

[11] A. Hall. Seven myths of formal methods. IEEE Softwae, 7(5):11-19,September
1990.

[12] D. Harel. Dynamiclogic. In D. Gabbayand F. Guenthner editors, Handbook
of PhilosophicalLogic, volume Il: Extensionsof ClassicalLogic, pages507-544.
Kluwer, 1984.

[13] D. HarelandR. Sherman.Loopingvs. repeatingn dynamiclogic. Informationand
Control, 55(1-3):175-1921982.

[14] F. Hayes-RothRulebasedsystemsComm.ACM, 28(9):921-9321985.

[15] J. Horl andB.K. Aichernig. Formal specificationof a voice communicatiorsystem
usedin air traffic control: An industrial applicationof light-weight formal methods
usingVDM . In FM’'99 — Formal Methods\ol. 1l, volume 1249 of Lectuie Notes
in ComputerSciencepagesl868—1868SpringefVerlag,1999.

30

[16] A. Kaiser A SAT-basedpropositionalprover for consisteng checkingof automotve
productdata. Technicalreport,Wilhelm-Schickard-Institufiir Informatik, Eberhard-
Karls-Unwersitat Tubingen,Sand13, 72076 Tubingen,Germairy, 2001. Technical
ReportwSI-2001-16.

[17] A. Kaiserand W. Kiichlin. Explaininginconsistenciein combinatorialautomotve
productdata.In Proc.2ndIntl. Conf onIntelligentTechnolagies(InTech 2001) pages
198-204 Banglok, Thailand,November2001.AssumptionUniversity.

[18] H. Kautz, D. McAllester, and B. Selman. Encodingplansin propositionallogic.
In Proc. Fifth Intl. Cont on Principlesof Knowledg Repesentatiorand Reasoning
(KR'96), pages374—-384 CambridgeMA, Novemberl996.Morgan Kaufmann.

[19] H. KautzandB. Selman Planningassatisfiability In Proc.10thEuropeanConfeence
on Artificial Intelligence(ECAI'92), pages359-363.JohnWiley andSons,1992.

[20] W. KiichlinandC. Sinz. Proving consisteng assertiongor automotve productdata
management.J. AutomatedReasoning24(1-2):145-163February2000. (Special
issue:Satisfiabilityin the Year2000).

[21] M.W. Moskewicz, C.F Madigan,Y. Zhao,L. Zhang,andS. Malik. Chaf: Engineering
an efficient SAT solver. In Proceedingof the 38th Design AutomationConfeence
(DAC 2001) pages30-535ACM, 2001.

[22] D.L. Nazareth.Issuesn the verificationof knowledgein rule-basedystems.Intl. J.
Man-Madine Studies30:255-2711989.

[23] D.L. Nazareth. Investigating the applicability of Petri netsfor rule-basedsystem
verification. [IEEE Trans.on Knowledg and Data Engineering 4(3):402—-4151993.

[24] D.L. NazaretrandM.H. Kennedy Verificationof rule-basednowledgeusingdirected
graphs.Knowledg Acquisition 3:339-360,1991.

[25] T.A. Nguyen,W.A. Perkins,T.J.Laffey, andD. Pecora.Checkinga knowledge-based
systemfor consisteng andcompletenessknowledgebaseverification. Al Magazine
8(2):69-75,1987.

[26] S.L. Pfleger and L. Hatton. Investicating the influenceof formal methods. IEEE
Computer30(2):33—-43February1997.

[27] A.D. PreeceC. Grossnerand T. Radhakrishnan.Validating dynamic propertiesof
rule-basedystemsintl. J. Human-ComputeStudies44(2):145-1691996.

[28] M. Ramasvamy, S. Sarkar and Y.-S. Chen. Using directedhypeigraphsto verify
rule-basedxpert systems.|EEE Trans.on Knowledg and Data Engineering 9(2),
1997.

[29] T.M. Shaft and R.F Gamble. A theoretical basis for the assessmenof
rule-basedsystem reliability. Foundationsof Information Systems July 2000.
http://www.cba.uh.edu/ parks/fis/fis.htm.

31

[30] C. Sinz,W. Blochinger andW. Kiichlin. PaSAT - parallelSAT-checkingwith lemma
exchange:Implementationand applications. In H. Kautz and B. Selman,editors,
LICS’2001Workshopon Theoryand Applicationsof SatisfiabilityTesting(SAT’2001),
volume 9 of Electronic Notesin Discrete Mathematics Boston, MA, June 2001.
Elsevier SciencdPublishers.

[31] C. Sinz,A. Kaiser andW. Kiichlin. Detectionof inconsistenciesh complex product
model datausing extendedpropositionalSAT-checking. In I. RussellandJ. Kolen,
editors, Proc. 14th Intl. FLAIRS Conf, pages645-649,Key West, FL, May 2001.
AAAI Press.

[32] C. Sinz, T. Lumpp,andW. Kuchlin. Towardsa verificationof the rule-basedxpert
systemof the IBM SA for OS/390automationmanager In Proceedingsof the 2nd
Asia-Racific Confeenceon Quality Softwae (APAQS 2001) pages367-374,Hong
Kong,Decembe2001.IEEE ComputerSociety

[33] F. Somenzi. CUDD: CU DecisionDiagram Package, Release2.3.Q University of
Colorado,Boulder 1998. Availableat http://vlsi.colorado.edu/abio.

[34] lan Sommerville. Softwae Engineering Intl. ComputerScienceSeries.Addison-
Weslegy, Harlow, England fifth edition,1997.

[35] S. Spreeuwenber, R. Gerrits,andM. Boekenoogen. VALENS: A KnowledgeBased
Tool to ValidateandVerify an Aion KnowledgeBase.In ECAI 2000,14th European
Conf on Artificial Intelligence pages7’31-73510S Press2000.

[36] The StandishGroup International,Inc. Five “T' s” of Data BaseAvailability, 1999.
http://www.pm2go.com/samplessearch/kieTs.pdf.

[37] R.S. Streett. Propositionaldynamiclogic of looping and corverseis elementarily
decidable Informationand Control, 54(1/2):121-1411982.

[38] T.E. UribeandM.E. Stickel. Orderedbinarydecisiondiagramsandthe Davis-Putham
procedure.In Proc. 1stintl. Conf on Constaintsin Computational.ogics, volume
845of Lecture Notesin ComputerScienceSpringerVerlag,Sept.1994.

[39] J.van Benthem.Modal Correspondenc&heory PhDthesis,Institutvoor Logicaen
Grondslagenonderzoefan ExacteWetenschappemniversity of Amsterdam1976.

[40] J. van Benthem. Correspondenctheory In D. Gabbayand F. Guenthnereditors,
Handbookof PhilosophicalLogic, volumell: Extensionsof ClassicalLogic, pages
167-247 Kluwer, 1984.

[41] R.J.Waldingerand M.E. Stickel. Proving propertiesof rule basedsystems.Intl. J.
Softwae Engineeringand Knowledg Engineering2(1):121-1441992.

[42] H. Zhang. SATO: An efficient propositionalprover. In Proc. 14th Intl. Conf
on AutomatedDeduction(CADE-97) volume 1249 of Lectuie Notesin Computer
Sciencepage272-275SpringerVerlag,1997.

32

A Appendix: Proofsof Lemmasand Theorem

Lemma?2 Let . Thenthefollowing holds:

for all
PROOF. (a) is obvious, as PRE contains asa conjunct.(b) follows from
definition of , (c) from property(P2) of atomicprogram . (d) is acon-

sequencef (P3)and(P4)in conjunctionwith

Lemma3 Let . Then iff

PROOF. We prove the lemmaby inductionon the structureof . Assume is

atomic,i.e. . We distinguishthreecasesFirst, if , then
, and by Lemma2(d) the claim holds. Second,if and , then
, andby Lemma2(c) we alsohave . Third, if ,
then ,l.e. . Also, by Lemmaz2(a)and(c), we have

Theothercasesareprovedusingthe propertythattherestrictionis ahomomorphic
extensionof theatomiccase.

Lemma6 Let bea loop candidatesequenceThen
(A.2)
is satisfiablaff thereis aloopingtransitionsequence . Moreover, themodels
of are (starting) statesof loopingtransitionsequences.
PROOF. Let with
“ " Assume is satisfiableThenthereisastate with
We now constructa looping transitionsequence with

33

, startingwith . Define

We now shaw that(8a)-(8f) holdsfor this .
(8a) By inductionon , usingthe recursve definition of , andthe fact that

(8b) As is obviously in , We have
(8c) holdsfor by definition of
(8e) Holdsby definitionof , as for
(8f) Considerary variable . First,assuméhereareno and with
. Then
for all , Which provesthe claim. Otherwise thereis an
with for some . The precondition excludesthe case
. Therefore,we have by (8c) and . By
repeatedlyusing(8e),we get for all :
holdsby definition of , Sothat for all
by (8a).
(8d) Wefirstprovethat .By Lemma3wehave
forall and . S0,byinduction,
for obviously holds. Let us now turn to
the proof of the secondpart i.e. . Let
forsome and for some . First, assume
that . Thenlet . We now have with
becausef Definition 4(2). So , by (8e) , andby (8a)
. Now, for theseconctaseassume . Then,asDefinition4(1)
yields , we get . Let . Then with
becaus®f Definition 4(2) and . Again, we have
andby repeatedlyusing(8e),andonce(8f), we get . Thus,by (8a)
“ 7. Assumehereis aloopingtransitionsequencen , say

Then (8a)-(8f) holdsfor by Lemma2. Now, becauseof (8a),
Repeatedapplicationof Lemma3, as above, in conjunctionwith (8d) ylelds

for . By repeate@pplicationof (8e)andfi-
nally (8f) we get for all . Thisproves .
Lemma7 Let bean actionsequencelf , then is a loop candidate
sequence
PROOF. As , thereis a sequencef states with
for and . Assumenow that is not

aloop candidatesequenceThenwe candistinguishtwo cases:

34

(1) Thereis avariable occurringonly oncein , say . By (8b) or (8c)

we eitherhave if or if . Inbothcases
for by (8e),and,morewer, by (8f) and(8e)

for . Thisis acontradictionto , which follows from (8d).

(2) Therearetwo actions , but thereis (a) noindex with
and for some , or thereis (b) noindex with either
or suchthat for some . Let usfirst assumehat(a)
holds.Then,by (8c), we have . As thereisno with
and for some , wegethby (8e)that for . But

by (8d), a contradictionCase(b) is handledsimilarly.

As a contradictionoccursin both casesye canconcludethat our assumptiorthat
is notaloop candidatesequencés wrong.

Theorem 8 is unsatisfiabldor all loop candidatesequences of length
iff theexpertsystentontainsno -loops.

PROOF.

“ " Let be unsatisfiabldor all loop candidatesequences of length
. Now, assumehattheexpertsystencontainsan -loop.Thenthereisalooping
transitionsequence . Let bethe associated
actionsequenceBy Lemma7, as , Isaloop candidatesequenceand
by Lemma6 is satisfiablea contradiction.

“ " Lettheexpertsystemcontainno -loops,i.e.thereis noloopingtransition
sequencef length . Now assumethat is satisfiablefor someloop
candidatesequence . Then,by Lemmas, thereis a looping
transitionsequencén of length , acontradiction.

35

