Verification of the IBM System Automation's Expert System

Carsten Sinz, Wolfgang Küchlin
Symbolic Computation Group, WSI, University of Tübingen

Thomas Lumpp
zSeries System Management, IBM Germany Development Lab
Overview

- Introduction IBM System Automation for OS/390
- Presentation of the built-in Expert System
- Consistency Criteria of the Rule Set
- Verification Methodology
- Results
- Conclusion
IBM System Automation (SA)

Automates operation of computer centers:

- Starting/stopping of applications (taking *dependencies* into account)
- Moving of applications between computers (e.g. on failure, for workload balancing)
- Supervision (active monitoring) of applications (current status? failure? system's workload?)
- Failure detection and error recovery
IBM System Automation (SA) (cont'd)

- Actions driven by *Automation Goals*, e.g.
 - start application A
 - move application B from S_1 to S_2
- Grouping allows simplified automation of complex applications.
- Plans generated and executed by Automation Manager
SA Example: Flight Reservation System

- **Flight Reservation**
 - start request
- **Transaction Management**
 - start request
- **Data Base**
 - start request
- **Network Subsystem**
 - start request
- **Web Server**
 - start request

Automation goal: start flight reservation system

- start/stop dependency
- collocation incompatibility
- collocation requirement
The Expert System of SA's Automation Manager

- Contains rules for each resource (application, computer system)
- Computes status of resources, propagates start/stop requests
- Situation-action rules (WHEN-THEN) for setting variables
Expert System: Rule Example

CORRELATION set/status/compound/satisfactory:
WHEN status/compound NOT E {satisfactory}
 AND status/startable E {yes}
 AND
 (status/observed E {available, wasAvailable}
 AND status/desired E {available}
 AND status/automation E {idle, internal}
 AND correlation/external/stop/failed E {false}
)
 OR
 (status/observed E {softDown, standBy}
 AND status/desired E {unavailable}
 AND status/automation E {idle, internal}
)
THEN SetVariable status/compound = satisfactory
 RecordVariableHistory status/compound
SA's Expert System: Example

correlation rule1:
when app1/state = down
and app1/goal = up
and app1/dependencies = fulfilled
then app1/state = up

correlation rule2:
when app1/state = up
and app1/IOError = true
then app1/state = down

app1/goal = up
app1/dependencies = fulfilled
app1/IOError = true

rule1

rule2

app1/state = down

app1/state = up

correlation rule3:
when app1/IOError = true
then app1/dependencies = pending
Verification Method

- Converting the rules to PDL (propositional dynamic logic)
- Formulating consistency properties in PDL
- Converting consistency properties to BOOL (Boolean or propositional logic)
- Running an Automatic Theorem Prover (ATP)
- Simplifying the result of the ATP
Verification Step 1: Converting Rules to PDL

PDL allows reasoning about programs α, β:

- $\alpha;\beta$: consecutive execution
- $\alpha \cup \beta$: nondeterministic choice
- α^*: finite, nondeterministic repetition
- $F?$: test for property (formula) F
- $[\alpha]F$: after all terminating executions of α F holds
- $\langle\alpha\rangle F$: there is a terminating program run of α after which F holds
- $\Delta \alpha$: the program α^* can diverge
Verification Step 1: Converting Rules to PDL (cont'd)

1. Conversion of finite domains
 New propositions $P_{v,d}$ for each variable v and each possible value d of v.

2. Introduction of atomic programs
 Atomic programs $\alpha_{v,d}$ for the assignment operation $v=d$.

3. Translation of rules
 \textbf{when} $F_{v,d}$ \textbf{then} $\alpha_{v,d}$ is translated to $(F_{v,d} \land \neg P_{v,d})?;\alpha_{v,d}$.

4. Translation of Single Step Program S and Automation Manager Program AM

$$S = \bigcup_{v,d_v} \left(F_{v,d_v} \land \neg P_{v,d_v} ?;\alpha_{v,d_v} \right) \quad AM = S^*; \bigwedge_{v,d_v} \left(F_{v,d_v} \Rightarrow P_{v,d_v} \right)?$$
Verification Step 2: Consistency Properties in PDL

- Functionality (unique result of computation):
 \[\langle AM \rangle p \leftrightarrow [AM]p \]
 (for all propositions \(p \))

- Termination:
 \[\neg \Delta S \]
 (\(\Delta \) is the divergence operator)

- Other consistency criteria, e.g. confluence
Termination / Loops

All non-terminating programs caused by program loops, e.g.:

- When F THEN $v=e$
- When G THEN $v=d$
- When J THEN $v=d$
- When G THEN $v=e$
- When H THEN $w=a$
- When F THEN $w=b$
Verification Step 3: Termination Property in BOOL

- Preliminary: *Proper restriction* $F|_{v=d}$

$$
P_{w,e}|_{v=d} = \begin{cases}
T & \text{if } v = w, d = e \\
\bot & \text{if } v = w, d \neq e \\
 & \text{if } v \neq w
\end{cases}
$$

allows specification of properties concerning multiple program states:

Let $s_0 \xrightarrow{v=d} s_1$. Then $s_1 \models F$ iff $s_0 \models F|_{v=d}$.

Verification Step 3: Termination Property (cont'd)

Example:
- Potential 2-loop: \[s_0 \xrightarrow{v=d_1} s_1 \xrightarrow{v=d_0} s_0 \]
- Corresponding rules: when F then \(v=d_1 \)
 when G then \(v=d_0 \)
- Then validity of the formula
 \[\neg (P_{v,d_0} \land F \land G|_{v=d_1}) \]
 is a necessary condition for the absence of this 2-loop.
- Actual occurrence of error may depend on rule evaluation order.
Verification Step 3: Termination Property (cont'd)

- In SA ordered evaluation of variables \(x<y<z<\ldots \), where \(x<y \) denotes that \(x \) is evaluated before \(y \).
- Extended property indicating absence of 2-loops considering variable evaluation order:

\[
\bigwedge_{w\prec v,d_w} (F_{w,d_w} \Rightarrow P_{w,d_w}) \Rightarrow \neg(P_{v,d_0} \land F \land G_{v=d_1})
\]
Verification Step 4: Automatic Theorem Prover

- Formulas generated in verification step 3 provide input for standard ATP program, e.g.
 - Davis-Putnam style prover (SAT)
 - BDDs (binary decision diagrams)

- Output is one of:
 - “no error” resp. list of counterexamples (SAT)
 - “no error” resp. formula representing all counterexamples (BDDs)
Verification Step 5: Simplification of Result

- In case of error,

\[
\text{EF} := \bigwedge_{w<v,d_w} (F_{w,d_w} \Rightarrow P_{w,d_w}) \Rightarrow \neg (P_{v,d_0} \land F \land G|_{v=d_1})
\]

is not valid, but formula representing counterexamples may be huge.

- Simplification: remove irrelevant variables (not contained in the 2 rules under consideration) by existential abstraction in EF:

\[
\exists \bar{X}. \text{EF}
\]

where \(\bar{X} \) contains all irrelevant variables.
Results

- **Input Formulas:**
 - Computation of resource’s *compound status*, 3 errors (rule overlap)
 - 41 rules, 74 variables, \(\approx 1500\) symbols

- **SAT**
 - Runtimes for proving non-looping properties: <1 sec.
 - Formulas for loop errors have relatively large number of models (270-405) representing individual error cases.

- **BDD**
 - Generation time: 1-2 sec.
 - Generated BDDs have \(\approx 100-200\) nodes.
 - Simplification reduces number of error cases to 1-3.
Summary / Conclusion

● Goal:
 ● Error detection in Rule-Based Expert Systems

● Method:
 ● Conversion of consistency properties to SAT
 ● Application of current SAT-checking technology

● Benefits:
 ● Correctness assertions possess high quality
 ● Compared to testing: covers all possible cases
 ● Generates generalized error patterns
Thanks for your attention!

Carsten Sinz
Symbolic Computation Group, WSI
University of Tübingen, Germany

http://www-sr.informatik.uni-tuebingen.de