Combining Parallel and Distributed Search in Automated Equational Deduction

Carsten Sinz, Jörg Denzinger, Jürgen Avenhaus and Wolfgang Küchlin

PPAM 2001
Outline of Talk

- Unfailing completion procedure
- Parallelization and distribution schemes
- Fine-grained parallelization: PaReDuX
- Distributed cooperating agents: TEAMWORK
- Combination of both approaches: TEAMWORK-PaReDuX
- Experimental results
- Conclusions
Unfailing Completion

- Calculus for equational reasoning by Bachmair, Dershowitz and Plaisted (1989)
- Basic objects: equations $s \leftrightarrow t$ and rewrite rules $l \rightarrow r$
- Basic inference rule: replace equals by equals

Example: \[\mathcal{E} = \{ f(x, y) \leftrightarrow f(y, x) \} \]
\[\mathcal{R} = \{ f(x, n) \rightarrow x, f(x, i(x)) \rightarrow n \} \]
\[f(f(i(x), n), x) \rightarrow_{\mathcal{R}} f(i(x), x) \leftrightarrow_{\mathcal{E}} f(x, i(x)) \rightarrow_{\mathcal{R}} n \]

- Proof of $\mathcal{T} \models a \leftrightarrow b$ by converting \mathcal{T} into two sets \mathcal{E}, \mathcal{R} by which a and b can be reduced to a common term c, i.e.

\[a \rightarrow_{\mathcal{R} \cup \mathcal{E}}^{*} c \leftarrow_{\mathcal{R} \cup \mathcal{E}}^{*} b \]
Unfailing Completion: Deduction Rules

Orient \[\frac{(P \cup \{s \leftrightarrow t\}; \mathcal{E}; \mathcal{R})}{(P; \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\})} \] if \(s \succ t \)

Unfail \[\frac{(P \cup \{s \leftrightarrow t\}; \mathcal{E}; \mathcal{R})}{(P; \mathcal{E} \cup \{s \leftrightarrow t\}; \mathcal{R})} \] if \(s \nless t, \ t \nless s \)

Collapse_\mathcal{E} \[\frac{(P; \mathcal{E} \cup \{s \leftrightarrow t\}; \mathcal{R})}{(P \cup \{u \leftrightarrow t\}; \mathcal{E}; \mathcal{R})} \] if \(s \rightarrow^\mathcal{D}_{\{u \rightarrow r\}} u, \ l \rightarrow r \in \mathcal{R} \cup \mathcal{E}_\succ \)

Collapse_\mathcal{R} \[\frac{(P; \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\})}{(P \cup \{u \leftrightarrow t\}; \mathcal{E}; \mathcal{R})} \] if \(s \rightarrow^\mathcal{D}_{\{u \rightarrow r\}} u, \ l \rightarrow r \in \mathcal{R} \cup \mathcal{E}_\succ \)

Compose \[\frac{(P; \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\})}{(P; \mathcal{E}; \mathcal{R} \cup \{s \rightarrow u\})} \] if \(t \rightarrow_{\mathcal{R} \cup \mathcal{E}_\succ} u \)

Simplify \[\frac{(P \cup \{s \leftrightarrow t\}; \mathcal{E}; \mathcal{R})}{(P \cup \{s \leftrightarrow u\}; \mathcal{E}; \mathcal{R})} \] if \(t \rightarrow_{\mathcal{R} \cup \mathcal{E}_\succ} u \)

Delete \[\frac{(P \cup \{s \leftrightarrow s\}; \mathcal{E}; \mathcal{R})}{(P; \mathcal{E}; \mathcal{R})} \]

Deduce \[\frac{(P; \mathcal{E}; \mathcal{R})}{(P \cup \{s \leftrightarrow t\}; \mathcal{E}; \mathcal{R})} \] if \(s \leftrightarrow t \in \text{CP}_\succ(\mathcal{R} \cup \mathcal{E}) \)
Parallelization and Distribution Schemes

- High degree of non-determinism in deduction rules, complexity of problem \rightarrow Heuristics
- Parallelization applicable on different levels:
 1. Individual deduction steps in parallel (fine-grained)
 2. (Large) groups of deduction steps in parallel (medium-grained)
 3. Independent or communicating calculi with different heuristics (coarse-grained)
- Parallelization scheme has to match hardware architecture:
 - (Symmetric) multi-processor computers (SMPs)
 - Clusters of workstations
Sequential Algorithm and PaReDuX

• Sequential algorithm (Huet, 1981):
 1. Select next equation, add it to \(R \) or \(E \) (Orient, Unfail).
 2. Perform simplifications (Collapse, Compose, Simplify, Delete).
 3. Derive new consequences (Deduce).
 4. Simplify goal and goto 1. until proof is found.

• PaReDuX: Parallel execution of deduction rules in steps 2 and 3:
 – Concurrently: Collapse&Compose, Simplify&Delete&Deduce
 – Instances of Simplify&Deduce executed in parallel for each equation resp. equation pair
Cooperating Agents: Teamwork

- Equation selection heuristic determines performance, but no universally best one → Use multiple competing heuristics
- Experts run instances of sequential algorithm with different heuristics.
- Team meetings allow exchange of positive/negative information.
- Referees evaluate success of each expert.
Cooperation in Teamwork

1. Compute Assessment
2. Send Short Reports
3. Choose New Supervisor
4. Send Full Reports
5. Distribute New Problem Description
Comparison PaReDuX vs. TEAMWORK

<table>
<thead>
<tr>
<th></th>
<th>PaReDuX</th>
<th>TEAMWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelization</td>
<td>fine-grained</td>
<td>coarse-grained</td>
</tr>
<tr>
<td>Equation selection heuristics</td>
<td>single, fixed</td>
<td>multiple, dynamic</td>
</tr>
<tr>
<td>Information exchange</td>
<td>all equations</td>
<td>“best” equations</td>
</tr>
<tr>
<td>Strategy-compliant?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Timing dependencies</td>
<td>none</td>
<td>considerable</td>
</tr>
<tr>
<td>Max. (theoretical) speed-ups</td>
<td>linear</td>
<td>super-linear</td>
</tr>
<tr>
<td>Communication</td>
<td>shared memory</td>
<td>network</td>
</tr>
<tr>
<td>Suitable HW platform</td>
<td>SMPs</td>
<td>clusters</td>
</tr>
</tbody>
</table>
Integration: TEAMWORK-PaReDuX

- TEAMWORK method with each expert running adapted PaReDuX algorithm

- Software architecture:

 ![TEAMWORK-PaReDuX Diagram]

 - PaReDuX and TEAMWORK approaches counteractive or complementary? → Empirical judgement
Experimental Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Runtimes</th>
<th></th>
<th></th>
<th>Speed-up</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOO002-2</td>
<td>411.95</td>
<td>154.02</td>
<td>194.80</td>
<td>76.19</td>
<td>2.67</td>
<td>2.11</td>
</tr>
<tr>
<td>BOO007-4</td>
<td>-</td>
<td>-</td>
<td>554.31</td>
<td>163.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BOO022-1</td>
<td>148.50</td>
<td>56.34</td>
<td>226.44</td>
<td>57.08</td>
<td>2.64</td>
<td>0.66</td>
</tr>
<tr>
<td>COL003-12</td>
<td>364.89</td>
<td>111.21</td>
<td>262.08</td>
<td>86.56</td>
<td>3.28</td>
<td>1.39</td>
</tr>
<tr>
<td>GRP002-4</td>
<td>205.93</td>
<td>83.36</td>
<td>14.00</td>
<td>6.22</td>
<td>2.47</td>
<td>14.71</td>
</tr>
<tr>
<td>GRP119-1</td>
<td>867.70</td>
<td>258.45</td>
<td>423.86</td>
<td>99.81</td>
<td>3.36</td>
<td>2.07</td>
</tr>
<tr>
<td>GRP122-1</td>
<td>752.73</td>
<td>218.73</td>
<td>155.31</td>
<td>49.23</td>
<td>3.32</td>
<td>4.85</td>
</tr>
<tr>
<td>GRP175-3</td>
<td>1422.15</td>
<td>555.19</td>
<td>63.70</td>
<td>29.04</td>
<td>2.56</td>
<td>22.33</td>
</tr>
<tr>
<td>GRP175-4</td>
<td>464.33</td>
<td>163.02</td>
<td>243.50</td>
<td>87.61</td>
<td>2.85</td>
<td>1.91</td>
</tr>
<tr>
<td>LUKA3</td>
<td>-</td>
<td>-</td>
<td>135.73</td>
<td>33.17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RA007</td>
<td>-</td>
<td>-</td>
<td>67.22</td>
<td>25.58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ROB004-1</td>
<td>1683.82</td>
<td>670.16</td>
<td>40.73</td>
<td>14.60</td>
<td>2.51</td>
<td>41.34</td>
</tr>
</tbody>
</table>

2 Sun ES450, each with 4 UltraSparcIi processors @400MHz, 1GB
Conclusions

1. **TEAMWORK-PaReDuX** integrates two different parallelization/distribution schemes.

2. **TEAMWORK-PaReDuX** reflects two-tired HW architecture of clusters of SMP computers.

3. Speed-up factors almost multiply compared to individual approaches.

4. Proposed combination presumably applicable to other search problems (e.g. Gröbner bases, resolution-based theorem provers).