On the Use of Extended Resolution in Propositional Reasoning

Carsten Sinz

Institute for Formal Models and Verification
Johannes Kepler University Linz
Linz, Austria

January 2006
Overview

- Motivation
- Proof Generation in SAT-Solvers
- Extended Resolution for Compressing Proofs
- Extended Resolution for BDD Constructions
- Conclusion
Part I: Motivation
Background

- Propositional logic used in many real-world applications today:
 - Hardware & software verification, planning, FPGA routing, product configuration
- Efficient decision procedures available
 - SAT-Solvers can handle instances with 100,000 variables and millions of clauses
- Justification of results needed
 - To locate errors, for debugging, ...
Example: Product Configuration

Options available for Mercedes-Benz’s C class: (excerpt, total: 692)

231 garage door opener integrated into interior mirror
280 steering wheel in leather design (two-colored) with chrome clip
550 trailer appliance
581 comfort air-conditioning THERMOTRONIC
671 light metal wheels 4x, 7 spoke design
673 high-capacity battery
772 AMG (sports) styling

Restrictions for Mercedes-Benz’s C class: (excerpt, total: 952)

AMG styling (772) cannot be combined with trailer appliance (550).

Comfort air-conditioning (581) requires high-capacity battery (673), except when combined with gasoline engines with 2.6 or 3.2 liter cylinder capacity.
General Setting

Propositional logic SAT problem

- Formulae in CNF: \(F = C_1 \land \ldots \land C_m \)

 with \(C_i = l_{i,1} \lor \ldots \lor l_{i,k_i} \) and \(l_{i,j} \in \{x, \neg x \mid x \in V\} \)

- Question: Is there an assignment to the variables in \(V \) such that \(F \) evaluates to true?

If yes, a model is found

- Delivers information to the user (solution, counter-example)
- Can easily be checked for correctness

If no, no model is found

- No additional information for the user
- Can we trust the SAT-Solver program? Is there really no model? What kind of „certificate“ can we obtain?
SAT Applications: Interpretation of Unsatisfiable Instances

- FPGA routing: channel unroutable
 - What is the reason for this? Where is the “hot spot”?

- Planning: no plan with the given restrictions
 - Which restrictions could be changed?

- Product configuration: no product instance with the given specification
 - How should the specification be changed?

- Finite mathematics (e.g. Quasigroup existence problems): no structure of a given size
 - Why is this the case? (resp.: Is there really no structure of this size or is the SAT-Solver faulty?)
Solution

- Generate proofs!
 - (Refutation) Proofs serve as certificates for unsatisfiability
 - Can be checked easily (polynomial in the length of the proof)
 - Resolution-based SAT-Solvers can generate proofs „as a by-product“
- Many SAT-Solvers resolution based
 - Thus easily extendable to generate resolution proofs
Part II: Proof Generation in SAT-Solvers
SAT-Solvers

- Predominant algorithm: **DPLL** (Davis-Putnam-Logemanm-Loveland)

```java
boolean DPLL(ClauseSet S) {
    while (S contains a unit clause \{L\}) { // unit propagation
        delete from S all clauses containing L; // u. subsumption
        delete \neg L from all clauses in S; // u. resolution
    }
    if (\emptyset \in S) return false;
    if (S = \emptyset) return true;
    choose a literal L occurring in S;
    if (DP(S \cup \{L\}) return true;
    else return DP(S \cup \{\neg L\});
}
```
SAT-Solvers: Recent Extensions

- Recent (influential) enhancements:
 - Clause (no-good) learning [MarquesSilva & Sakallah 1996]
 - Fast (lazy) Boolean constraint propagation (*watched literals* data structure) [Moskewicz *et al.* 2001]
 - Improved (dynamic) variable selection heuristics (VSIDS, locality considered) [Moskewicz *et al.* 2001]
 - Rapid random restarts (to overcome heavy-tail behavior) [Gomes *et al.* 1998]
 - Clause set compression (deletion of subsumed clauses) [Biere 2004]

- Also important: instances occurring in practice are highly structured
longmult8-B
Enhanced DPLL Algorithm with Learning

```java
boolean DPLL-Enhanced {
    forever {
        ok = propagate_units();
        if (!ok) {
            // conflicting assignment
            generate_and_add_conflict_clause();
            new_level = backtrack();
            if (new_level < 0) return false;
        }
        if no more open variables return true;
        decide(); // assign value to open literal
    }
}
```
Lemma Generation: Example

Adding the conflict-induced clause avoids repeated search.

UP: \(m = 0 \)

UP: \(f, g = 1 \)

UP: \(x = 1 \)

conflict-induced clause: \((y, \overline{u})\)

adding the conflict-induced (learned) clause avoids repeated search.
Resolution Proofs for Generated Lemmas

Reason side

Conflict side

Resolution proof:

(y, f) (f, g) (f, g, h) (u, m, h) (u, f, m)

Ordering:
Proofs in the DPLL Algorithm with Learning

- Resolution proofs for lemmas are *trivial*
 - input (i.e. also linear)
 - regular (i.e. all resolution variables are distinct)
 (Notion defined in [Beame et al. 2003])
- Resolution refutation for F is generated by
 - Taking proofs of all lemmas used to derive the empty clause
- Proof of a lemma (resp. involved input clauses) also called a *proof chain*
State of the Art

- Proof ("trace") generation built into some SAT-Solvers
 - Chaff, MiniSAT, booleforce
- Proofs may become large!
 - 929 MB for a proof trace of PHP$_{11}$ with booleforce
- Core extraction can alleviate situation
Core Extraction

- Idea: determine a smallest possible clause set that is still unsatisfiable
 - MUS (minimal unsatisfiable subformula)
 - Approximation algorithm [Bruni&Sassano 2000]
 - Based on iteratedly solving modified SAT instances [Oh et al. 2004]
 - Core extraction
 - Based on resolution of learned clauses [Zhang&Malik 2003]
 - Core contains clauses in the lemma’s proof chains
 - May be applied iteratively
 - Also implemented in booleforce
Challenging Problems

- How can smaller proofs be obtained?

- Proofs for non-resolution decision procedures (e.g. Binary Decision Diagrams)

Idea: Use stronger proof systems to represent proofs
Part III:
Extended Resolution for Compressing Proofs
Extended Resolution (ER)

- **Resolution Rule + Extension Rule**
- **Resolution Rule:**
 \[
 \frac{C \cup \{l\} \quad D \cup \{ar{l}\}}{C \cup D}
 \]
- **Extension Rule:**
 - Add clauses for definition \(x \leftrightarrow F \)
 - \(x \) new variable (i.e. not occurring in original formula or previous definitions)
 - \(F \) arbitrary formula (original paper: only \(F = l_1 \land l_2 \) allowed)
 - First proposed by Tseitin in 1970
General Ideas of Proof Compression

- Merge proof chains
- Exploit symmetries

Related ideas proposed in the context of first-order logic:
- Dynamically add definitions [Eder 1990]
- Quantifier introduction [Egly 1992]
- Function introduction [Baaz&Leitsch 1992; Egly 1993]
- Substitution formulae (δ^m-resolution) [Peltier 2005]
Merging Proof Chains

- **Observation**: Many proof chains differ by only a few clauses, e.g.
 - (25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -31), and
 - (25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -32)

- **Idea**: Re-order proof steps and merge common parts of proof chains
Merging Proof Chains: Constellations

common postfix

common prefix

mixed cases also possible
Merging Proof Chains: Common Prefix

merging easily possible: equivalent to three shorter chains
(no ER required)
Merging Proof Chains: Common Postfix

Assume \(A = (a_1, \ldots, a_p, c_1, \ldots, c_r) \)
and \(B = (b_1, \ldots, b_q, c_1, \ldots, c_r) \)
(with \(c_i \) common literals of \(A, B \); none of the \(a_i \) or \(b_i \) must be resolved below \(A, B \))

Define \(w_1 \leftrightarrow (a_1 \lor \ldots \lor a_p) \)
and \(w_2 \leftrightarrow (b_1 \lor \ldots \lor b_q) \)
and \(w \leftrightarrow w_1 \land w_2 \)

Further, let \(AB^* = (w, c_1, \ldots, c_r) \).

Then \(A, B \vdash_{ER} AB^* \)
and \(AB^*, E_1, \ldots, E_k \vdash_{ER} RS^* = R[a_1, \ldots, a_p/w] = S[b_1, \ldots, b_q/w] \)
(as none of the \(a_i \) or \(b_i \) is resolved below \(A, B \))
and \(RS^* \vdash_{ER} R, S \)

We thus have a (possibly shorter) ER proof for \(R \) and \(S \).
Exploiting Symmetries

- Assume F symmetric, i.e. $F = \pi(F)$ for some permutation π of the literals.
- Idea:
 - Instead of many proofs for symmetric clauses C, $\pi(C)$, $\pi^2(C)...$, derive C's symmetric closure
 $\text{SymCl}(C) = C \land \pi(C) \land \pi^2(C) \land \pi^3(C) \land ...$
 - with one ER proof
 - Advantage: only one proof chain for C, $\pi(C)$, $\pi^2(C)$, ...
- Work in progress
Part IV:
Extended Resolution Proofs
out of BDD Computations
Binary Decision Diagrams (BDDs)

- **BDDs**: Graph-based data structure to represent Boolean functions
 - Based on Shannon expansion:
 \[f = (x \rightarrow f|_{x=1}) \land (\neg x \rightarrow f|_{x=0}) \]
 - Isomorphic sub-graphs shared
 - Canonical representation when variable order is fixed

\[f = (x \rightarrow f|_{x=1}) \land (\neg x \rightarrow f|_{x=0}) \]

BDD representing formula \(x \land (y \lor \neg z) \)
BDDs (cont’d)

- Common in HW verification
- BDDs typically built bottom-up from smaller ones using BDD constructors (BDD_and, BDD_or,...)
- BDDs as SAT-Solver (for $S = \{C_1, \ldots, C_m\}$):
 1. Convert clauses C_i to BDDs c_i
 2. Using BDD_and, construct BDDs h_i for partial conjunctions $C_1 \land \ldots \land C_i$
 3. S is unsatisfiable iff $h_m = 0$
Proofs from BDD Constructions

- Algorithm:
 1. Generate BDDs for clauses c_i and partial conjunctions h_i as indicated
 2. Add definitions for all used nodes: $f \leftrightarrow \text{ITE}(x,f_0,f_1)$
 3. Generate ER proofs for
 a) $S \vdash_{ER} c_i$
 b) $S \vdash_{ER} c_1 \land c_2 \rightarrow h_2, \quad S \vdash_{ER} h_{i-1} \land c_i \rightarrow h_i$
 c) $S \vdash_{ER} h_m$

- Parts a) and c) easy, b) by recursion

- Details in [Sinz&Biere 2006]: first experimental results promising (trace size reduced from 929 MB to 8 MB for PHP_{11})
Proofs from BDD Constructions
Recursive Step

\[
(\tilde{f}xf_0)(\tilde{f}_0\tilde{g}_0h_0) \\
(\tilde{g}_xg_0)(fx\tilde{g}_0h_0) \\
(hx\tilde{h}_0) \\
(\tilde{f}\tilde{g}hx) \\
(\tilde{f}\tilde{g}h)
\]

\[
(\tilde{f}_1\tilde{g}_1h_1)(\tilde{f}xf_1) \\
(fx\tilde{g}_1h_1)(\tilde{g}_xg_1) \\
(hx\tilde{h}_1) \\
(\tilde{f}\tilde{g}hx) \\
(\tilde{f}\tilde{g}h)
\]

With node definitions:

\[f \leftarrow x ? f_1 : f_0\]
\[g \leftarrow x ? g_1 : g_0\]
\[h \leftarrow x ? h_1 : h_0\]
Conclusion

- Shown two applications of Ext. Resolution:
 1. Proof compression for DPLL-based SAT-Solvers
 2. ER-Proofs from BDD constructions

- Applications in
 - HW & SW verification, configuration, ...
 - “Certificate” generation for SAT-Solvers

- Outlook
 - Extension to QBF
 - Symmetry