
SLA-Based SAN Design
Eray Gençay∗§, Carsten Sinz∗ and Wolfgang Küchlin∗

∗ WSI for Computer Science, University of Tübingen, D-72076 Tübingen, Germany,
Email: see http://www-sr.informatik.uni-tuebingen.de/pages/staff.html

§ IBM Deutschland GmbH, D-55131 Mainz, Germany, Email: egencay@de.ibm.com

Abstract—Storage Area Networks (SANs) connect storage de-
vices to servers over fast network interconnects. We consider the
problem of optimal SAN configuration with the goal of retaining
more security in meeting service level agreements (SLAs) on
unexpected peaks.

First, we give an algorithm for assigning storage devices to
applications running on the SAN’s hosts. This algorithm tries
to balance the workload as evenly as possible over all storage
devices. Our second algorithm takes these assignments and
computes the interconnections (data paths) that are necessary
to achieve the desired configuration while respecting redundancy
(safety) requirements in the SLAs. Again, this algorithm tries to
balance the workload of all connections and devices. Thus, our
network configurations respect all SLAs and provide flexibility
for future changes by avoiding bottlenecks on storage devices or
switches.

We also discuss integrating our solution with the open source
SAN management software Aperi.

I. INTRODUCTION

Today’s mainframe computers or servers do not contain
disks for mass storage. Instead, business critical data is
centrally stored in dedicated large capacity storage devices,
which are connected to the host computers (servers) over fast
interconnects like fibre channel switches and hubs. Such a
Storage Area Network (SAN) may consist of dozens or even
hundreds of hosts, switches, and storage devices, and therefore
the proper design and management of a SAN is a non-trivial,
but business critical, task.

In addition, SAN configurations have to fulfill Service Level
Agreements (SLAs), which express performance requirements
the SAN has to attain. For example, an SLA may guaran-
tee certain throughput rates or storage capacities for a host
application. Many SLAs reflect data flow requirements that
originate from the applications running on the servers. While
designing a SAN, these requirements should be considered
besides “best-practices” constraints like redundancy rules, and
technical constraints like the limits of the resources, e. g. the
number of ports of a device.

Our rule-based system SANchk [2] already checks whether
a given SAN configuration respects a number of best practices
rules. In this paper, we consider the problem of configuring a
SAN in an optimal way, while additionally taking a number
of SLAs into account. Our primary concern is not to minimize
hardware cost but to maximize the flexibility to accommodate
changing SLA requirements in the future. This is because the
most critical cost factor associated with a SAN is not raw
hardware but operation downtime, e.g. for reconfiguration.
In fact, downtime of business critical SANs is simply not

an option beyond maybe one hour of scheduled maintenance
once a year. Whenever a new or changed SLA cannot be
accommodated because reconfiguration is too costly, it must
be accommodated by purchasing additional new hardware.
Therefore it is of prime importance for a new configuration to
avoid future performance bottlenecks which may necessitate
major reconfigurations.

For a given set of hardware devices, we attempt to achieve
a uniformly high proportion of free resources at each device,
grouped by device types (e.g., X% free storage capacity on
each storage device and Y% unused ports in each switch).
In this way, we can increase the probability that the QoS
requirements of all applications are still met, even if some of
the applications demand more resources than planned, because
bottlenecks are avoided. This in turn will result in a decrease
of SLA violations and SLA penalties, respectively.

The rest of the paper is organized as follows: Section II
gives a formal definition of the first part of our SAN design
problem, namely the problem of assignments of applications
to storage devices, and demonstrates it with an example. Sec-
tion III defines the second problem, the connection problem.
Section IV discusses the integration of the solution into a SAN
management framework on the example of Aperi. In Section
V, we present work related to our paper. Finally, we draw our
conclusions and consider the future work in Section VI.

II. SAN STORAGE ASSIGNMENT PROBLEM

In the storage assignment problem, we have as input the
applications with their requirements (throughput and storage
space), the information which host is serving which applica-
tions, and data about the storage devices’ capacities (through-
put, storage space). We want to find out, which applications
should use which storage devices in order to get a distribution
of the workloads on the devices as evenly as possible.

A. Assignment of Applications to Storage Devices

Let D = {d1, . . . , dn} be the set of storage devices, and
H = {h1, . . . , hm} be the set of hosts. Storage devices di ∈ D
are modelled as pairs di = (ci, ti), where ci stands for the
provided storage capacity and ti for the provided throughput
capacity of device i. In analogy, for all hosts hi ∈ H , hi is a
pair hi = (c′i, t

′
i) consisting of the need for storage capacity

c′i of host i and its throughput requirement t′i. To express that
there is an assignment between a host and a storage device,
we define a set X = {xi,j ∈ {0, 1} | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

with xi,j = 1 iff there is a host i that is assigned to storage
device j.

1) Applications and hosts: Let Ai = {a1, . . . , ak} be
the set of applications that run on host i. Applications a
are pairs (c′, t′) consisting of storage capacity requirement
and throughput requirement. In our formalization, instead of
mapping applications to storage devices, we use a simplifying
trick: We represent each of the applications on a host as a
“pseudo host”. Thus, if there are k applications running on
host i, we replace host i by k pseudo hosts. By doing this, we
just have to map (pseudo) hosts to storage devices. In order
to make this simplification step work, we have to conduct an
additional trivial pre-check to see if the host can serve all the
applications running on it with the desired throughput capacity.
Our optimization then produces an assignment of pseudo
hosts to storage devices. Since we know which application is
running on which host, we can find out in a next step, which
physical links are needed between hosts and storage devices.

In our approach, we define an application as an atomic entity
that occupies an indivisible block on the storage device. Hence,
we would represent a DBMS that uses different storage spaces
for its table data and logging information—having different
requirements for each of them—as two different applications
in our model.

B. Constraint Blocks

In the following, we formulate some constraints (in Pseudo-
Boolean logic) to ensure that we obtain valid assignments to
the variables in the set X . We use IH = {1, . . . ,m} and
ID = {1, . . . , n} as index sets for hosts and storage devices,
respectively.

1) Exactly one connection to a storage device for each
pseudo host: Every pseudo host (application) should be served
by exactly one storage device at the end of the computation:
∀i ∈ IH :

∑n
k=1 xi,k = 1.

2) Capacity constraints: It has to be ensured that the
storage capacities of the storage devices are not exceeded:
∀j ∈ ID :

∑m
k=1 c′kxk,j ≤ cj , i.e., the sum of the storage

space requirements of all hosts that are assigned to a storage
device dj does not exceed the storage capacity cj of the device.

3) Throughput constraints: This constraint block ensures
that the port speeds provided by the storage devices are not
exceeded: ∀j ∈ ID :

∑m
k=1 t′kxk,j ≤ tj .

C. Optimization Problem

So far, we can find valid assignments between hosts and
storage devices. The next step is the definition of a goal
function for the optimization. We want the workloads for
storage devices to be balanced as much as possible, so that the
free resources on devices are maximized proportional to their
capacities. This kind of optimization has advantages like the
increase of flexibility in the choise of resources, since fewer
devices would be working with their full capacity. Another
advantage is that the probability of violating service level
agreements would also be decreased. Since we maximize the
unused part of the devices’ resources, it is less likely that the

SLAs are violated, even if some of the applications behave
unexpectedly.

1) Scaling of inequalities: In order to achieve an equal
balancing of the throughputs, we first have to scale all
throughput constraints such that their right hand sides become
equal. By doing this, we can generate constraints that limit the
throughput for each storage device to a constant factor below
what is maximally possible. Scaling also serves to obtain
integer coefficients, as in our case the constraint solver can
only handle such constraints.

Using scaling factors s∗j (1 ≤ j ≤ n) for our throughput
constraints, we obtain: ∀j ∈ ID : s∗j ·

∑m
k=1 t′kxk,j ≤ s∗j · tj .

We define the scaling factors by s∗j = 1/tj ·
∏n

i=1 ti to achieve
equal right hand sides t∗norm =

∏n
i=1 ti of the throughput

inequalities. We might need an additional scaling factor sI

(now the same for all inequalities) to convert the coefficients to
integers, but we will not consider this in our further discussion,
and assume that after scaling with the factors s∗j all coefficients
are integers.

Obviously, one would like to make the number t∗norm as small
as possible in order to reduce the time the solver needs to
process the problem. To achieve this, we divide all inequalities
by the greatest common divisor q of all occurring coefficients.
We call the resulting scaling factors sj , i.e. sj = s∗j/q.
Similarly, we call the resulting common right hand side of
the inequalities tnorm, i.e. tnorm = t∗norm/q.

2) Auxiliary variables: To transform the satisfiability prob-
lem we have obtained so far into an optimization problem, we
introduce a set of auxiliary variables L = {l0, . . . , lp}. The
auxiliary variables are the binary representation of a number
l = l0 + 2 · l1 + · · · + 2p · lp. These auxiliary variables
are added to the scaled throughput capacity inequalities:
∀j ∈ ID : sj ·

∑m
k=1 t′kxk,j +

∑p
r=0 2rlr ≤ tnorm.

The auxiliary variables in an inequality symbolize the
unused resources on the device. The idea now is that we
maximize the value of l. Since li ∈ {0, 1} for all auxiliary
variables li ∈ L , we still have a Pseudo-Boolean problem.

3) Objective function: The objective function of the opti-
mization problem maximizes the sum of the auxiliary vari-
ables, formally: max

∑p
r=0 2rlr.

D. Test of Preconditions

Before generating the constraint system, we check some
trivial preconditions, whose unsatisfiability implies the un-
satifiability of the whole constraint system due to an invalid
configuration of hosts, applications or storage devices.

1) Throughput requirements of the applications are too
high: If the sum of the throughput requirements of the
applications that are resident on a host is greater than the
throughput rate that is supplied by the host bus adapter of
that host, then it is impossible to find a satisfying solution.
Formally: Let TAi = {t1, . . . , ts} be the set of the throughput
requirements of the applications on host i and tsum,i the sum
of the throughput rates of the ports of the host. If we have∑

ti∈TAi
ti > tsum,i, the configuration is invalid.

2) Storage space requirements of applications are too high:
If the storage space requirement of a single host or a single
application is greater than the greatest available capacity on the
side of the storage devices, the configuration is unsatisfiable.
Formally: Let CAi

be in analogy to 1) the set of storage space
requirements of the applications that are resident on host i,
and cmax the maximal storage capacity among the storage
devices. Then the configuration is unsatisfiable, if we have
∃ck ∈ CAi , i ∈ IH : ck > cmax.

E. Example

In the following, we demonstrate a small example with three
applications and three storage devices. A = {a1, a2, a3} is
the application set, where ai = (t′i, c

′
i) is a pair consisting of

the throughput and capacity requirements for the application.
The applications are supposed to have the following settings:
t′1 = 0.1, t′2 = 1.0, t′3 = 0.5, c′1 = 50, c′2 = 100, c′3 = 70.

The storage devices are represented as a set D =
{d1, d2, d3} that contains tuples with the provided throughput
and storage capacities of the storage devices: di = (ti, ci).
The storage devices have the following settings: t1 = 2.0,
t2 = 1.0, t3 = 1.0, c1 = 200, c2 = 120, c3 = 300.

Now, the constraints are as follows:
1) Exactly one connection to a storage device for each

pseudo host: x1,1 + x1,2 + x1,3 = 1, x2,1 + x2,2 + x2,3 = 1,
x3,1 + x3,2 + x3,3 = 1.

2) Capacity constraints: 50 · x1,1 + 100 · x2,1 + 70 · x3,1 ≤
200, 50 · x1,2 + 100 · x2,2 + 70 · x3,2 ≤ 120, 50 · x1,3 + 100 ·
x2,3 + 70 · x3,3 ≤ 300.

3) Throughput constraints: 0.1 ·x1,1 +1 ·x2,1 +0.5 ·x3,1 ≤
2, 0.1·x1,2+1·x2,2+0.5·x3,2 ≤ 1, 0.1·x1,3+1·x2,3+0.5·x3,3 ≤
1.

4) Optimization function: To build the optimization func-
tion, we must first scale the throughput constraints to obtain
a common right hand side and integer coefficients (in our
example, we have to scale the constraints to a common right
hand side of 20). Then, we calculate how many auxiliary
variables we need, and add them with their corresponding
coefficients to every single throughput constraint. The op-
timization function is to maximize this sum. To cover a
range of 0 to 20, we need five auxiliary variables, and thus
l = l0 + 2l1 + 4l2 + 8l3 + 16l4 + 32l5.

After getting the problem solved by the solver OPBDP [1],
an implementation of an implicit enumeration algorithm for
solving (non-)linear Pseudo-Boolean optimization problems
with integer coefficients, the following variables were fixed
to 1: l1, l3, x1,2, x2,1, x3,3. The resulting SAN storage
assignment is shown below.

F. Empirical Results

In our initial tests, it took less than one minute to calculate
problems of size up to 15 hosts and 15 storage devices
with real device attribute data and manually generated QoS
requirements information. From size 16 x 16 on, the measured
run times were at least 10 minutes. Our test results are shown
in Table I.

H1
t'1 = 0.1 Gbps,

c'1 = 50 GB

H2
t'2 = 1.0 Gbps,
c'2 = 100 GB

H3
t'3 = 0.5 Gbps,

c'3 = 70 GB

D1
t1 = 2 Gbps,
c1 = 200 GB

D2
t2 = 1 Gbps,
c2 = 120 GB

D3
t3 = 1 Gbps,
c3 = 300 GB

Fig. 1. An example configuration with three hosts and three storage devices,
and their computed assignments.

TABLE I
SOLVING TIMES FOR PROBLEMS UP TO SIZE 15 X 15.

Hosts Storage Devices Mean Time (s)
10 10 0.3
11 11 0.3
12 12 0.5
13 13 14.3
14 14 12.7
15 15 51.2

III. SAN CONNECTION PROBLEM

The second SAN configuration problem we consider deals
with how to lay out connections in a SAN, which link hosts,
switches, and storage devices. Certain criteria (SLAs) have to
be met in order to obtain a correct configuration. For example,
it is typically required that all paths from hosts to storage
devices are redundant.

We assume that the assignment from hosts to storage devices
is already given (e.g., computed by the algorithm we have
given in Section II), i.e. we already know which paths are
needed and their required throughput.

We assume sets of hosts H = {h1, . . . , hk}, switches
S = {s1, . . . , sl} and storage devices D = {d1, . . . , dm}.
By D = H ∪ S ∪ D we denote the set of all SAN devices.
Moreover, we assume a set of paths P = {p1, . . . , pn} which
are to be routed through the SAN. Each path p ∈ P connects
a host h(p) ∈ H to a storage device d(p) ∈ D, but the
individual hops are not known. Redundancy is modeled by
having the same host and storage device connected by more
than one path. By thr(p) we denote the required throughput
of a path p ∈ P . Similarly, thr(x) denotes the maximal
throughput for a single port of device x ∈ D (we assume
the throughput to be the same for all ports of a device). By
ports(x) we denote the number of available ports on device
x. To characterize a path, we use predicates conn(x, y, p),
denoting that device x is (directly) connected to device y
on path p, and functions mult(x, y, p) to denote the required
multiplicity of the link between x and y on path p, if it is

realized1. Note that mult(x, y, p) can be computed in advance
by mult(x, y, p) = dthr(p)/ min{thr(x), thr(y)}e. We will
also use auxiliary predicates x ∈ p to denote that device x
occurs on path p. Note that conn(x, y, p) implies x ∈ p∧y ∈ p.

Now we can specify the constraints for a correctly config-
ured SAN network:

1) Each p ∈ P must be a valid path in the network,
connecting device h(p) with device d(p), i.e. there
must be a sequence s1, . . . , st of switches, such that
the predicates conn(h(p), s1, p), conn(st, d(p), p), and
conn(si, si+1, p) for all 1 ≤ i < t hold.

2) Redundant paths must not use the same switches. I.e., if
paths p1 and p2 are redundant—which we will denote by
red(p1, p2)—then s ∈ p1 implies s /∈ p2 for all s ∈ S.

3) For each path p, the throughput requirement must be sat-
isfied, i.e. mult(x, y, p) ·min{thr(x), thr(y)} ≥ thr(p)
must hold for all x, y, for which conn(x, y, p) is true.
This constraint always holds if we use the definition for
mult(x, y, p) as given above.

4) The number of ports of each device must be sufficient:∑
p∈P,y∈out(x),z∈in(x) mult(x, y, p) + mult(z, x, p) ≤

ports(x) for all x ∈ D, where out(x) = {u ∈ D |
conn(x, u, p)} and in(x) = {u ∈ D | conn(u, x, p)}.

As our optimization goal we have chosen to minimize the
fraction of ports that are used on each device. This goal
ascertains that the load on all devices is equally balanced.
It can be expressed as min maxx∈D

{
ports used(x)

ports(x)

}
, where

ports used(x) is the expression on the left hand side of the in-
equality in constraint 4. To convert this expression to a Pseudo-
Boolean optimization goal, we use the same scaling trick that
we already used in Section II-C, i.e. we scale the inequalities
in constraint 4 such that they possess a common right hand
side, and then introduce a slack variable l =

∑p
i=0 2ili on the

left hand side of each inequality. Afterwards we maximize
the slack variable. We want to conclude this section with
two remarks: First, the maximal path length t (in number of
switches) is typically quite low, e.g. 3, which facilitates the
encoding of paths. And second, SAN devices often put a limit
on the maximal trunk width (i.e. the number of “parallel” links
between two devices). This may be specified by an additional
restriction similar to constraint 4. All these constraints can be
converted to Pseudo-Boolean logic and handled by a standard
Pseudo-Boolean solver.

A. Encoding as a Pseudo-Boolean Problem

We will now show in detail how the constraints given in the
last section can be encoded as a Pseudo-Boolean optimization
problem. First, we encode paths: Let tmax be the maximal
number of switches that shall occur on a path. We encode
each path p as a sequence (up, vp,1, . . . , vp,tmax , wp) of binary
numbers, where vp,i is the number of the i-th switch on path
p (1 ≤ vp,i ≤ l), up + 1 is the index of the host (0 ≤ up < k)
and wp + 1 is the number of the storage device (0 ≤ wp <

1We use the predicates conn(x, y, p) always in such a way that x is closer
to the “host side” and y is closer to the “storage device side”.

m) of path p. A value vp,i of zero indicates the end of a
path. For each path we thus need tmax · ld(l + 1) + ld(k) +
ld(m) bits to encode it.2 Note that the values of up and wp

are fixed by the SAN specification, whereas the values of the
vp,i are undetermined. We derive predicates red(p1, p2) and
ports suff as follows:

red(p1, p2) ⇔
∧

1≤i≤tmax

(
vp1,i 6= 0 ⇒

∧
1≤j≤tmax

(vp2,j 6= 0 ⇒ vp1,i 6= vp2,j)
)

ports suff ⇔
∧

1≤i≤k

ports suffH(hi) ∧∧
1≤i≤l

ports suffS(si) ∧
∧

1≤i≤m

ports suffD(di)

ports suffH(h) ⇔
∑

p∈P,s∈S
h(p)=h

mult(h, s, p) · (vp,1 =s) ≤ ports(h)

ports suffS(s) ⇔
∑
p∈P

(
mult(h(p), s, p) · (vp,1 =s)

+
∑

s′∈S,s′ 6=s

(
mult(s, s′, p) ·

∨
1≤i<tmax

(vp,i =s ∧ vp,i+1 =s′)

+ mult(s′, s, p) ·
∨

1<i≤tmax
(vp,i =s ∧ vp,i−1 =s′)

)
+ mult(s, d(p), p) · L(s, p)

)
≤ ports(s)

ports suffD(d) ⇔
∑

p∈P,s∈S
d(p)=d

mult(s, d, p) · L(s, p) ≤ ports(d)

where L(s, p) is true, if s is the last switch on path p:

L(s, p) ⇔
∨

1≤t≤tmax

(
(vp,t = s) ∧

∧
t<t′≤tmax

(vp,t′ = 0)
)

Moreover, we have to restrict the values vp,i to admissible
values in the range [0, l], as long as l + 1 is not a power
of 2. This can be achieved easily by further Boolean logic
constraints.

The equations vp,i = x are translated as follows:

vp,i = x ⇔
∧
j

(
bitj(vp,i)⇔bitj(x)

)
(with obvious simplifications if x is a constant), where bitj(x)
denotes the value of bit j in the binary representation of x.

As a further constraint, we might add that on each path
at least one switch is used. This excludes degenerate cases,
where hosts are directly connected to storage devices, which
is typically not considered as a good SAN design. To achieve
this, we simply add the constraint vp,1 6= 0 for each path p.

The whole set of Pseudo-Boolean constraints for the SAN
connection problem then consists of the set of redundancy

2By ld(x) we denote the logarithmus dualis of x.

constraints red(p1, p2) for all paths that should be redundant,
plus the constraints generated by ports suff , plus the addi-
tional definitions for the vp,i, L(s, p), and Ck.

Our encoding as given does not allow sharing of links, so
far. However, by changing the definition of mult(x, y, p), such
that it would also allow “fractions of ports” to be allocated,
sharing of links could be formalized.

Another optimization goal, slightly different from the one
given above, would be to balance the throughput of the used
ports of each switch as evenly as possible. By this, smaller
changes in the throughput requirements would not lead to the
necessity of reconfiguring the SAN. Such an optimization goal
could also be realized by allowing fractions of ports to be
virtually allocated.

IV. IMPLEMENTATION IN A SAN MANAGEMENT
FRAMEWORK

Since SANs are managed mostly by an integrated and
central management software, it is very likely that such a
solution is to be implemented as part of a storage management
software. An example of such a software framework is Aperi.
Aperi is an open source project at the Eclipse Foundation. The
project aims to provide a framework for SAN management
based on open standards. In an earlier work, we integrated a
solution (SANchk) for SAN configuration checking according
to “best practices rules” into Aperi [2], [3]. An optimization
tool with the function described above can be integrated into
Aperi as plugins in analogy to that.

Aperi is based on Equinox and the Rich Client Platform.
Equinox is the reference implementation of the “R4 core
framework specification” from the standard Open Services
Gateway initiative (OSGi). Using Equinox, plugins can be
directly integrated into Eclipse and thus also into Aperi to
extend the framework.

The major components of Aperi are two servers (data server
and device server), an RCP-GUI, a database, and agents that
run on hosts and collect data. Any extension to Aperi should
extend some of these components. Since Aperi uses the OSGi
framework, it provides for each component its own Extension
Points.

Aperi has a request-response architecture, which uses Ser-
vice Provider, Request Handler, Request and Response objects.
An extention to the framework should also use these objects
to accomplish the communication between the new plugin or
plugins and the components of Aperi.

In Figure 2, we demonstrate, how the solution could be
integrated into a storage management framework on the exam-
ple of Aperi with our configuration checking plugin SANchk.
Except for some small improvements, Aperi and SANchk do
not need to be modified. In order to enable SLA-based network
design optimization, Aperi database should be extended by
tables for applications that are running on the hosts and their
SLA requirements. On the SANchk side, attributes to the
XML elements for rules and their rule parameters should be
added, which indicate how a rule should be transformed into
a constraint in OPB format.

Fig. 2. Integration of the optimizer into Aperi.

Optimizer GUI should help users add some custom con-
straints, modify settings and see results after computation.
The GUI should show the current network design at the
start, so that users can exclude one part of the devices from
the optimization, or can append a fictitious device that is
planned to be procured. These actions on the GUI can than be
transformed into constraints in OPB format and added to the
constraint system. The goal function for the constraint system
should also be specified on the GUI. Users should be able to
choose among several different optimization goals.

OPB Constraints Generator obtains input from several
sources. It uses rules from the configuration checking plugin
that are relevant for network design like redundancy rules, ad-
ditional constraints that are generated by the GUI as mentioned
above, the chosen goal function, and the information about the
network components (existing hosts, storage devices, switches
etc. with their capacities) to generate single OPB constraints.
After the constraints in OPB format are generated, the problem
should be solved by an off-the-shelf solver. The solver should
have an API in Java or C in order to be able to work with
Aperi. After the computation, the results should be reported
to users on the GUI.

The functionality described above can be packed into two
plugins, one for the GUI and the other for the application
logic. The plugin for application logic should contain the OPB
Constraints Generator and the code that handles the solver.
It should also contain a Request Handler in order to accept
Request objects from the GUI plugin. After processing the
request, it should send back a Response object. The GUI
plugin should contain beside the Optimizer GUI components
also an extra Eclipse view and other auxiliary classes that are
needed for the integration of the GUI into the Aperi GUI.

V. RELATED WORK

This paper is an extended version of the short paper [4].
Here, we additionally discuss the integration of the solution
into the open source SAN management software Aperi, present
complete encodings for the algorithms, and give preliminary
test results for the first optimization problem.

Optimization problems related to SAN design have been
treated previously in several publications ([5], [6], [7], [8], [9],
[10]). They differ from our approach mainly in the definition
of the optimization problem and its goal function, in the input
parameters or methods used to solve the problem.

Ward et al. [5] present two different heuristic algorithms,
namely FlowMerge and QuickBuilder, to design a SAN
automatically. FlowMerge merges single flows of data that
share a switch or hub in a set of flows in a recursive way.
Beginning with a fully bipartite, directed graph (every host is
connected with every storage device), the number of the edges
are decreased incrementally while hub and switch nodes are
added to the network. Dicke et al. ([6], [7]) use biologically
inspired approaches to improve SAN designs or to create
new SAN designs. Walker et al. [11] have a mixed-integer
approach to the SAN design problem and also use the minimal
provisioning cost as the optimization goal. They focus on the
Core-Edge reference topology and provide two formulations
for the SAN design problem. A framework for automated
storage management based on QoS specifications is Rome [12]
by HP Laboratories. Singh et al. [?] have proposed a SAN FS
planning tool that uses the notions of application templates
and a planning engine to assist a system designer with the
design process. PulsatingStore [13] is an analytical framework
that provides an automated storage management service for
DBMS that balances the conflicting goals of performance
guarantees and on-demand resource usage. Anderson et al.
[14] present the Disk Array Designer (DAD) that uses a
generalized best-fit bin packing heuristic to design disk arrays
according to both capacity and I/O performance demands for
the application data. Reiss and Kanungo [15] examine the
problem of choosing a QoS level for each table or index in
a service provider’s backend databases to minimize the cost
of provisioning storage while satisfying the application level
SLAs.

VI. CONCLUSION

We defined and formalized the SAN design problem to
increase the flexibility of a SAN instead of to minimize the
provisioning cost. The flexibility increases on the one hand
its ability to meet the QoS requirements for the applications
running on its hosts, even if some of the workloads behave
themselves spontaneously irregularly, and on the other hand
the ability of the network to grow without the need of major
structural changes.

We discussed the implementation of the solution in a storage
management framework on the example of the Open Source
project Aperi.

ACKNOWLEDGMENT

The research presented in this paper was funded by IBM
Deutschland GmbH. We are grateful to the storage experts at
IBM Deutschland GmbH, Mainz for their technical support in
storage related subjects.

REFERENCES

[1] E. Gençay, W. Küchlin, and T. Schäfer, “SANchk: An SQL-based
validation system for SAN configuration,” in IEEE/IFIP Symposium on
Integrated Network Management, IM 2007, 2007, pp. 333–342.

[2] P. Barth, “A Davis-Putnam based enumeration algorithm for linear
pseudo-Boolean optimization,” Max-Planck-Institut für Informatik, Im
Stadtwald, D-66123 Saarbrücken, Germany, Research Report MPI-I-95-
2-003, January 1995.

[3] E. Gençay, C. Sinz, W. Küchlin, and T. Schäfer, “SANchk: SQL-based
SAN configuration checking,” IEEE Transactions on Network and
Service Management, 2008, conditionally accepted. [Online]. Available:
http://www-sr.informatik.uni-tuebingen.de/∼gencay/tnsm gencay.html

[4] E. Gençay, C. Sinz, and W. Küchlin, “Towards SLA-based optimal
workload distribution in SANs,” in IEEE/IFIP Network Operations and
Management Symposium, NOMS 2008, 2008. [Online]. Available: http:
//www-sr.informatik.uni-tuebingen.de/∼gencay/noms2008 gencay.html

[5] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes, “Appia: Auto-
matic storage area network fabric design,” in FAST ’02: Proceedings
of the 1st USENIX Conference on File and Storage Technologies.
Berkeley, CA, USA: USENIX Association, 2002, p. 15.

[6] E. Dicke, A. Byde, P. J. Layzell, and D. Cliff, “Using a genetic algorithm
to design and improve storage area network architectures.” in GECCO
(1), 2004, pp. 1066–1077.

[7] E. Dicke, A. Byde, D. Cliff, and P. J. Layzell, “An ant inspired technique
for storage area network design,” in BioADIT, 2004, pp. 364–379.

[8] S. Uttamchandani, G. A. Alvarez, and G. Agha, “DecisionQoS: An
adaptive, self-evolving QoS arbitration module for storage systems,” in
POLICY, 2004, pp. 67–76.

[9] S. Uttamchandani, L. Yin, G. A. Alvarez, J. Palmer, and G. Agha,
“CHAMELEON: a self-evolving, fully-adaptive resource arbitrator for
storage systems,” in ATEC’05: Proceedings of the USENIX Annual
Technical Conference 2005 on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2005, pp. 6–6.

[10] S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer, and D. Pease,
“Polus: Growing storage QoS management beyond a ”4-year old kid”,”
in FAST ’04: Proceedings of the 3rd USENIX Conference on File and
Storage Technologies. Berkeley, CA, USA: USENIX Association, 2004,
pp. 31–44.

[11] C. Walker, M. O’Sullivan, and T. Thompson, “A mixed-integer approach
to core-edge design of storage area networks,” Comput. Oper. Res.,
vol. 34, no. 10, pp. 2976–3000, 2007.

[12] J. Wilkes, “Traveling to Rome: QoS specifications for automated storage
system management,” in IWQoS ’01: Proceedings of the 9th Interna-
tional Workshop on Quality of Service. London, UK: Springer-Verlag,
2001, pp. 75–91.

[13] A. Singh, K. Voruganti, S. Gopisetty, A. Fleshler, R. Routray, and C. hao
Tan, “SANFS Maestro: Resource planning for enterprise storage area
network (SAN) file systems,” in CSREA EEE, 2005, pp. 32–38.

[14] L. Qiao, D. Agrawal, A. E. Abbadi, and B. R. Iyer, “PULSATING-
STORE: An analytic framework for automated storage management,”
in ICDEW ’05: Proceedings of the 21st International Conference on
Data Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2005, p. 1213.

[15] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang,
“Quickly finding near-optimal storage designs,” ACM Trans. Comput.
Syst., vol. 23, no. 4, pp. 337–374, 2005.

[16] F. R. Reiss and T. Kanungo, “Satisfying database service level agree-
ments while minimizing cost through storage QoS,” in SCC ’05:
Proceedings of the 2005 IEEE International Conference on Services
Computing. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 13–21.

