
Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints

Carsten Sinz

Institute for Formal Models and Verification
Johannes Kepler University Linz, A-4040 Linz, Austria

carsten.sinz@jku.at

Abstract. We consider the problem of encoding Boolean cardinality constraints
in conjunctive normal form (CNF). Boolean cardinality constraints are formulae
expressing that at most (resp. at least) k out of n propositional variables are true.
We give two novel encodings that improve upon existing results, one which re-
quires only 7n clauses and 2n auxiliary variables, and another one demanding
O(n · k) clauses, but with the advantage that inconsistencies can be detected in
linear time by unit propagation alone. Moreover, we prove a linear lower bound
on the number of required clauses for any such encoding.

1 Introduction

Cardinality constraints—expressing numerical bounds on discrete quantities—arise fre-
quently out of the encoding of real-world problems, e.g. in product configuration, radio
frequency assignment or in reconstructing images form computer tomographs [1–3].
With considerable progress made over the last years in solving propositional satisfia-
bility (SAT) instances, interest increased in tackling problems that include cardinality
constraints using SAT-solvers. This, however, requires an encoding of cardinality con-
straints in the language of purely propositional logic or, more specifically, in conjunctive
normal form (CNF), the predominant input language of modern SAT-solvers.

Boolean cardinality constraints put numerical restrictions on the number of propo-
sitional variables that are allowed to be true at the same time. A typical construct like
≤k (x1, . . . , xn) expresses that not more than k of the n variables x1, . . . , xn are al-
lowed to be true. The traditional way of converting a constraint like ≤k (x1, . . . , xn) to
purely propositional logic is by explicitly excluding all possible combinations of k + 1
variables being simultaneously true, thus obtaining∧

M⊆{1,...,n}
|M |=k+1

∨
i∈M

¬xi ,

which requires
(

n
k+1

)
clauses of length k + 1. In the worst case of k = dn/2e − 1

this amounts to O(2n/
√

n/2) clauses. Better encodings are known [3, 4] and will be
further improved in this paper. The general idea of these improved encodings is to build
a count-and-compare hardware circuit and then translate this circuit to CNF. Besides
the constraint’s variables x1, . . . , xn, additional encoding variables s1, . . . , sm will be

2

allowed. Formally, we are looking for an optimal encoding (typically minimizing the
number of clauses) according to the following definition.

Definition 1. A clause set E over the variables V = {x1, . . . , xn, s1, . . . , sm} is a
clausal encoding of ≤k (x1, . . . , xn) if for all assignments α : {x1, . . . , xn} → B the
following holds: there is an extension of α to α∗ : V → B that is a model of E if and
only if α is a model of ≤k (x1, . . . , xn), i.e. if and only if at most k of the variables xi

are set to 1 by α.

2 Encoding Using a Sequential Counter

We now give a CNF encoding for cardinality constraints of the form ≤k (x1, . . . , xn)
that is based on a sequential counter circuit. The circuit is shown in Fig. 1 and computes
partial sums si =

∑i
j=1 xj for increasing values of i up to the final i = n. The values

of all si’s are represented as unary numbers. The overflow bits vi are set to true if the
partial sum si is greater than k.

To convert this circuit to CNF, we first build defining equations for the partial sum
bits si,j and the overflow bits vi. We then simplify these equations, noting that all over-
flow bits have to be zero. The resulting equations are then converted to CNF, further
noting that one direction of the equations can be dropped due to polarity considerations
(the basic technique was introduced by Tseitin [5], and later re-invented and extended
by different authors, e.g. Jackson and Sheridan [6]). We thus arrive at a set of clauses,
call it LTn,k

SEQ, defining the cardinality constraint ≤k (x1, . . . , xn) based on the sequen-
tial counter (for k > 0 and n > 1):

(¬x1 ∨ s1,1)
(¬s1,j) for 1 < j ≤ k
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)

}
for 1 < j ≤ k

(¬xi ∨ ¬si−1,k)

 for 1 < i < n

(¬xn ∨ ¬sn−1,k)

LTn,k
SEQ consists of 2nk + n − 3k − 1 clauses and requires (n − 1) · k auxiliary

variables for the encoding. Due to its practical importance, we explicitly give the clause
set LTn,1

SEQ (for the case k = 1, as a formula):

(¬x1∨s1,1)∧(¬xn∨¬sn−1,1)∧
∧

1<i<n

(
(¬xi∨si,1)∧(¬si−1,1∨si,1)∧(¬xi∨¬si−1,1)

)
This clause set consists of 3n− 4 clauses (and n− 1 additional encoding variables) and
is thus—with regard to the number of clauses—superior to the naı̈ve encoding for all
n > 5. The following theorem summarizes our results.1.

1 Due to space limitations we do not give proofs here. They can be found, however, on the Web
at http://www-sr.informatik.uni-tuebingen.de/˜sinz/CardConstraints

3

 x1 x2

 s1,1

 s1,k

 xn

 s2,1

 s2,k

 sn-1,1

 sn-1,k

 v1 v2 vn

 xi

 si-1,1

 si-1,k

 si,1

 si,k

 si-1,2 si,2

≥1

≥1

≥1

&

&

&

 si-1,k-1

 vi

 si-1,k-1

Fig. 1. Left: Circuit for computing ≤k (x1, . . . , xn). si,j denotes the j-th digit of the i-th partial
sum si in unary representation; variables vi are overflow bits, indicating that the i-th partial sum
is greater than k. Right: Sub-circuit for computing a partial sum si in unary representation.

Theorem 1. LTn,k
SEQ is a clausal encoding of ≤ k (x1, . . . , xn) requiring O(n · k)

clauses and O(n · k) auxiliary variables.

The encoding LTn,k
SEQ also fulfills the efficiency condition given by Bailleux and

Boufkhad [3]. If more than k variables are set to true (which violates the cardinality
constraint ≤k (x1, . . . , xn)), this can be detected by unit propagation alone, i.e. by a
linear time decision procedure. Moreover, for a partial assignment that sets k of the
variables xi to true, the value of all other xi’s can be derived by unit propagation.

3 Encoding Using a Parallel Counter

The second encoding we present is based on a parallel counter circuit designed by
Muller and Preparata [7]. Their counter (shown in Fig. 2) recursively splits the input
bits xi into two halves, and counts the number of inputs that are set to true in each
half. The results—represented as binary numbers—are then added using a standard m-
bit binary adder. In order to obtain a circuit for cardinality constraints based on this
counter, the output bits of the counter are handed on to a subsequent comparator which
checks whether or not the counter value is less than k. (The comparator is not shown in
Fig. 2.)

Parallel Counter Circuit. The parallel counter consists of n − blog nc − 1 full-adders
and at most blog nc half-adders, as was shown by Muller and Preparata (‘log’ denoting
the logarithmus dualis). The encoding of each half-adder and full-adder is based on
the well-known equations for these circuits. We finally obtain three clauses {(a ∨ ¬b ∨
sout), (¬a∨¬b∨ cout), (¬a∨ b∨ sout)} for each half-adder (computing a⊕ b) and seven
clauses

(a ∨ b ∨ ¬c ∨ sout) (¬a ∨ b ∨ c ∨ sout) (¬a ∨ ¬b ∨ cout)
(a ∨ ¬b ∨ c ∨ sout) (¬a ∨ ¬b ∨ ¬c ∨ sout) (¬a ∨ ¬c ∨ cout)

(¬b ∨ ¬c ∨ cout)

4

∑2m-1 ∑2m-1

∑n

 x1 x2m-1 x2m xn-1 xn

A1Am-1 A0

 z0 z1 zm-1 ym-1 y1 y0

 s0 s1 sm-1 sm

Fig. 2. Parallel counter according to Muller and Preparata [7] for recursively computing the binary
number of inputs xi that are set to true. The sub-circuits Aj are 1-bit-(full-)adders.

for each full-adder (computing a ⊕ b ⊕ c) , summing up to at most 7n − 4blog nc − 7
clauses. Here again, only implications, but not full equivalences, have to be encoded.
This is due to the polarity-based simplification technique already used above and the
observation that only ones have to be propagated to the outputs, but not zeroes. Aux-
iliary variables are needed for the sum and carry bits of the half- and full-adders, we
therefore need at most 2 · (n− 1) additional encoding variables.

Comparator Circuit. The comparator circuit has to make sure that the result of the bi-
nary counter (smsm−1 . . . s0) is not greater than k. For building this binary comparator
we assume that the constraint’s limit k is given as an (m + 1)-bit binary number, say
k = km . . . k0. We can then easily give recursive equations to generate the clauses for
the (m + 1)-bit comparator:

L(k0) =

{
{{¬s0}} if k0 = 0
∅ if k0 = 1

L(ki . . . k0) =

{
{{¬si}} ∪ L(ki−1 . . . k0) if ki = 0
{{¬si}} ⊗ L(ki−1 . . . k0) if ki = 1

Here ⊗ denotes clause distribution, i.e. A ⊗ B = {x ∪ y | x ∈ A, y ∈ B} for sets of
clauses A, B. With this definition, L(km . . . k0) is the clause set that ensures that the
counter’s output is less than k. It contains at most m + 1 clauses. Denoting the com-
bined clause set (parallel counter and comparator) by LTn,k

PAR, we obtain the following
theorem (using m = blog nc).
Theorem 2. LTn,k

PAR is a clausal encoding of ≤k (x1, . . . , xn) requiring at most 7n −
3blog nc − 6 clauses and 2n− 2 auxiliary variables.

4 Comparison, Lower Bound and Conclusion

Criteria for assessing the clausal encodings are (i) the number of clauses required; (ii)
the number of additional propositional variables required; and (iii) the time needed to

5

decide the encoding. In our comparison we have included the naı̈ve encoding (men-
tioned in the introduction) and the encodings of Bailleux&Boufkhad and Warners.

Table 1. Comparison of different encodings for ≤k (x1, . . . , xn).

Encoding #clauses #aux. vars decided
Naı̈ve

`
n

k+1

´
0 immediately

Sequential unary counter (LTn,k
SEQ) O(n · k) O(n · k) by unit prop.

Parallel binary counter (LTn,k
PAR) 7n− 3blog nc − 6 2n− 2 by search

Bailleux & Boufkhad [3] O(n2) O(n · log n) by unit prop.
Warners [4] 8n 2n by search

With respect to the number of clauses required, our encoding LTn,k
PAR is the best, as

can be seen from Table 1; however, it requires search to check whether the constraint is
fulfilled or not. Among the encodings requiring no search is that of Bailleux&Boufkhad
and our LTn,k

SEQ encoding. The latter performs better for small values of k, whereas the
former is better for large bounds.

Considering optimality of clausal encodings for ≤k (x1, . . . , xn), we have shown
elsewhere that for all n ∈ N and all k with 0 ≤ k < n − 1, each clausal (CNF)
encoding of ≤k (x1, . . . , xn) requires at least n clauses. Such a proof touches the realm
of Boolean function complexity [8]. It might be an interesting topic for future research
to see in how far results from this field are transferrable to the area of minimal clausal
encodings. We think that looking for improved lower bounds is worthwhile and still
expect much room for improvement here. Moreover, an experimental evaluation of the
different encodings should be of great practical value.

References

1. Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data manage-
ment. J. Automated Reasoning 24 (2000) 145–163

2. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assign-
ment. Constraints 4 (1999) 79–89

3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In
Rossi, F., ed.: 9th Intl. Conf. on Principles and Practice of Constraint Programming (CP 2003).
Volume 2833 of Lecture Notes in Computer Science., Springer (2003) 108–122

4. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form.
Inf. Process. Lett. 68 (1998) 63–69

5. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Slisenko, A.O.,
ed.: Studies in Constructive Mathematics and Mathematical Logic. (1970) 115–125

6. Jackson, P., Sheridan, D.: The optimality of a fast CNF conversion and its use with SAT. Tech-
nical Report APES-82-2004, APES Research Group (2004) Available from http://www.dcs.st-
and.ac.uk/ apes/apesreports.html.

7. Muller, D.E., Preparata, F.P.: Bounds to complexities of networks for sorting and for switch-
ing. J. ACM 22 (1975) 195–201

8. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987)

