
Comparing Different Logic-Based Representations
of Automotive Parts Lists

Carsten Sinz 1

Abstract. Parts lists in the automotive industry can be of consid-
erable size. For the Mercedes cars of DaimlerChrysler, for example,
they consist of more than 30.000 entries for the larger model lines.
Selection of the right parts for a particular product instance is com-
plicated, and typically done via a logical formalism relating order
codes with parts. To simplify part assignment, formalisms which use
compact and concise formulae are required. We present and compare
five different formalisms for such compact logical representations.

1 INTRODUCTION
In the automotive industry there is a persistent trend towards indi-
vidually configured cars [1, 9]. This results in an enormous product
variety that has to be coped with in sales, engineering, production,
and after sales. Typically, the configuration of an individual car is ac-
complished on the level of order codes, which represent equipment
options that a customer can select [3]. Such options include, among
others, different engine types, wheel designs, interior and exterior
colors, as well as car electronics like audio and navigation systems,
and accessories like bike or ski carriers. As different equipment op-
tions may be mutually exclusive or require additional options, for-
malisms are needed to describe valid combinations. Moreover, auto-
matic checking algorithms are needed to verify whether a customer’s
order is valid. A common way to describe these constrains is via log-
ical formulae or rules [4, 5, 6, 7, 8, 10].

For each valid order (which satisfies all configuration constraints),
in a second step, the right parts have to be selected. Mathematically
speaking, this requires a mapping M : P(C) → P(P) from sets of
order codes to sets of parts (we denote by C the set of order codes, by
P the set of parts, and by P(X) the powerset of X). Typically, the
mapping can be broken down into a sequence of smaller mappings
M1, . . . , Mk, one for each assembly position in the car. For an order
S ⊆ C, the required parts list M(S) then is the collection of the
required parts for all assembly positions, i.e. M(S) = M1(S)∪· · ·∪
Mk(S). Moreover, the mapping for a position is often functional (but
not necessarily total), such that the definition of Mi can be changed
to Mi : P(C) → P , and M(S) becomes {Mi(S) | 1 ≤ i ≤ k}. We
will assume such functional mappings in the rest of this paper.

There are different ways to represent these mappings, and choos-
ing a suitable one is a non-trivial task, as it has to be concise, intel-
ligible, as well as easily maintainable. In what follows, we restrict
our attention to parts mappings for individual assembly positions,
i.e. we are only interested in constructing the smaller mappings Mi.
This makes a difference only from a practical point of view (sizes of
considered parts sets), and has no influence on the proposed math-
ematical formalisms. It should also be noted that the mappings Mi

1 Johannes Kepler University, Linz, Austria, email: carsten.sinz@jku.at

not only have a reduced range (of zero or one in the functional case),
but also typically depend only on a few dozen of codes, and thus can
also be considered to possess a reduced domain.

2 PARTS LIST REPRESENTATIONS

We now turn to the question, how such parts list mappings Mi can
be represented. Throughout this section, we use the following small
example to illustrate the proposed methods: Assume three different
order codes A, B, and C that influence an assembly position, and
four different parts P1, . . . , P4 which may be selected depending on
the combination of selected codes (in reality there are up to a few
dozen of codes and comparably many parts that have to be considered
for each position2). In each valid configuration we assume that at
least one of the codes A, B, C has to be present, and if A and B are
selected, then C must also be present in the order. We further assume
a parts mapping according to the following variant table:

variant A B C part
1 X P1
2 X P2
3 X –
4 X X P3
5 X X P2
6 X X X P4

Note that direct use of such a table is not feasible in practice, as, e.g.,
for a position depending on 20 codes it would contain up to 220 lines.

2.1 Direct Propositional Encoding

The direct propositional encoding of the parts map uses propositional
logic formulae (parts rules) that are associated with each part of a
position. The parts rule is built upon the order codes, which are used
as atomic propositions. To determine the matching part for a position,
all the position’s rules are evaluated based on the assignment induced
by the customer’s order (its characteristic function), and those parts
for which the rule evaluates to true are selected. In our example, we
would therefore obtain the following rule table:

parts rule part
A ∧ ¬B ∧ ¬C P1
¬A ∧B P2
A ∧ ¬B ∧ C P3
A ∧B ∧ C P4

2 The largest position for Mercedes’ E-Class limousines depends on 135 or-
der codes and contains 27 different parts.



For the order {A, C}, e.g., rule A ∧ ¬B ∧ C evaluates to true, and
thus part P3 is selected.

However, this representation suffers from the drawback that
negated codes have to be mentioned, too, which can cause a blow-
up of the rules and make them harder to construct and maintain. It
thus would be preferable to have a formalism that allows for more
compact rules.

2.2 Propositional Encoding with Implicit Negations
The propositional encoding with implicit negations (IN) avoids spec-
ification of negated codes in rules and thus delivers a more compact
encoding. Rules are computed from the variant table by building a
term (conjunction of literals) for each row, removing negated codes
from each term, and disjunctively composing terms that correspond
to the same part. The resulting table is as follows:

IN parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

Now when computing the parts assignment for a particular order,
an additional decoding step is required before evaluating the rules
with the ordinary propositional semantics. This decoding works in
two steps, inverting the encoding process:

1. First, all rules are converted to disjunctive normal form (DNF),
such that they become disjunctions of terms (conjunctions).

2. Then, for each term, missing codes are added negatedly. Missing
codes are codes that occur in the position, but not in the term.

After decoding, rules are evaluated as usual and the suitable part is
computed as with the direct propositional encoding.

For the rule of part P2 (which is already in DNF), e.g., decoding
delivers (B ∧ ¬A ∧ ¬C) ∨ (B ∧ C ∧ ¬A), which is equivalent to
B ∧ ¬A (the same as in the direct encoding). Care has to be taken
in formulating the shortened IN rules in this formalism, however, as
the absorption rule of Boolean logic is not valid any more. Thus,
the rule for part P2 must not be simplified to B. Shortened rules
of this formalism cannot only be derived from the variant table, but
are supposed to be set up straightaway by the parts list maintenance
personnel. Note, however, that the IN formalism requires one term
for each row of the variant table for which a part is selected, which
puts a natural limit on the compression capabilities of this formalism.

2.3 Propositional Encoding with Implicit
Exclusions

A slight variant of the propositional encoding with implicit negations
is that with implicit exclusion (IE). Like the former, it adds negated
subformulae to terms of shortened rules in DNF and requires a de-
coding step to interpret rules; but in contrast to the former, it does
not add missing literals, but rules of other parts, so-called exclusion
formulae. The idea of exclusion formulae is to disambiguate part se-
lection for overlapping rules by not assigning any part to the overlap.
In more detail, the decoding step works as follows:

1. Compute the DNF of all rules, resulting in a set of conjunctions
(terms) for each rule.

2. For each term T of each rule, conjunctively add negations of all
terms S from other rules that are not subsumed by T , i.e. for which
S 6⊆ T holds (S and T are regarded as sets of literals here).

As an example, consider the following table with IE rules:

IE parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

To decode the first IE rule (for part P1) we have to add negatedly all
non-subsumed terms from rules of other parts. These non-subsumed
exclusion terms are B, B ∧ C, A ∧ C and A ∧B ∧ C, such that the
decoded rule for part P1 becomes A∧¬B∧¬(B∧C)∧¬(A∧C)∧
¬(A ∧ B ∧ C), which is logically equivalent to A ∧ ¬B ∧ ¬C. As
a result, all overlaps with other parts are removed.

2.4 Propositional Encoding with Rule Priority
Another way to achieve more compact rules is by assigning them an
evaluation order. This can be done by adding priorities (RP). Rules
are then evaluated in order of decreasing priority. As soon as a rule
matches, the decoding process is aborted and the respective part is
selected. Using priorities we obtain a table like this for our example:

RP parts rule priority part
A ∧B ∧ C 3 P4
B 2 P2
A ∧ C 2 P3
A 1 P1

Now, for a customer’s order {A, C}, the rules are checked one by
one in order of decreasing priority, starting with the rule for part P4,
which has highest priority. As this rule does not match, we proceed to
any rule with next highest priority (2 in our case), from which the one
for part P3 matches. So this part is selected, and the decoding pro-
cess is finished. A general rule of thumb to assign priorities—to rules
consisting of only one term, at least—is to use the number of literals
in the term. The RP formalism is used, e.g., in SAP Automotive.

2.5 Cascaded Conditions Algorithm
If priorities assigned in the RP formalism are all distinct, the for-
malism can be re-written in a more programmatic way, as it then is
equivalent to a cascade (CC) of if-then-else expressions (or, alterna-
tively, a case statement). Modifying the priorities in turn to 4, 2, 3 and
1 for the rows of our exemplary RP table, we obtain this program:

if A ∧B ∧ C then select(P4)
else if A ∧ C then select(P3)
else if B then select(P2)
else if A then select(P1)

One problem with the if-then-else-cascades is that they are hard
to maintain, especially if the rules and number of cases grow larger.
Imagine, e.g., what would happen if {A, B} became a valid order
that selects no part? Which rules have to be changed in which way
then? Maintenance can thus become a non-trivial task.

2.6 Best-Fit Algorithm
At last, we want to present an algorithm that avoids ordering of parts
rules for evaluation, but still keeps advantageous properties of the
priority-based approach and combines them with ideas from the IE
formalism. It works by computing the quality of how good a rule fits



to a customer’s order, and selects the best fitting one (BF). Different
fitness (or quality) measures are possible, but we only present one
that maximizes the number of matching literals. It works as follows:

1. Compute DNFs for all rules, giving a set of terms for each rule.
2. For each term that matches the order (i.e. evaluates to true), com-

pute the number of literals that coincide with the order (matching
positive literals that occur in the order as well as negative literals
not occuring in the order are counted); this is the fitness measure.

3. If there is exactly one matching term with highest fitness mea-
sure, the corresponding part is included into the parts list. Other-
wise (i.e. if no or more than one term with highest fitness measure
matches), an ambiguity exists, and no part is chosen.

Consider again our examplary table, now with BF parts rules:

BF parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

For the order {A, C} there are two matching terms, namely A and
A ∧ C. The latter’s fitness measure is 2, whereas the former’s is 1.
Thus part P3, corresponding to parts rule A ∧ C, is chosen.

3 COMPARISON
We now want to compare the aforementioned formalisms, starting
with the IN and IE encodings. They seem quite similar, but differ-
ences become discernible on even small examples. Consider two
parts rules, A and B ∧ C:

IN / IE parts rule IN decoding IE decoding part
A A ∧ ¬B ∧ ¬C A ∧ (¬B ∨ ¬C) P1
B ∧ C ¬A ∧B ∧ C ¬A ∧B ∧ C P2

If we visualize the IN / IE part rules in a Venn diagram (Fig. 1 left,
red/darker for the first, green/lighter for the second parts rule), we
see that there is an overlap between the rules for an order containing
all three codes A, B and C. The IN encoding (Fig. 1 middle) selects
part P1 only if none of the codes B and C is present, whereas the IE
decoding (Fig. 1 right) selects a part for all but the overlap, which is
perhaps the more natural interpretation.

Figure 1. Different interpretations of IN and IE encoding. Left: IN / IE
rule; middle: IN decoding; right: IE decoding.

Turning our attention now to all five logical parts list representa-
tions, we want to compare them regarding compactness of represen-
tation, intelligibility and ease of maintenance.

property IN IE RP CC BF
compactness – + + + +
intelligibility 0 0 0 + 0
ease of maintenance – – 0 – 0

In the encoding with implicit negation (IN) compactness suffers
due to the fact that it requires one term for each entry of the vari-
ant table. This is not the case for all other encodings, which thus are
more concise. Turning to intelligibility, all encodings should be com-
prehensible after some practice. However, the program-like encoding
CC is perhaps the easiest to grasp. Maintaining a (large) logic-based
parts list is not simple. This is especially the case for the IN encoding
with its resulting bulky rules, but also for the IE encoding, where it
might become hard for large rules to figure out the occurring over-
laps. The same holds for the CC encoding, where many rules may
have to be modified when inserting a new variant.

4 RELATED WORK
In knowledge representation similar problems like those of this pa-
per arise. The most frequently proposed solution is that of assign-
ing priorities (or weights) to rules [11]. Other related formalisms are
negation-as-failure (cf. Prolog) or the stable model semantics [2].

5 CONCLUSION
We have presented five different ways to compactly represent logic-
based parts lists. The relevance of these formalisms stems from the
fact that they are already in practical use at different automotive com-
panies. However, maintenance of logic-based parts lists is a compli-
cated task that requires a thorough understanding of the basic logi-
cal formalism. Most of the methods presented in this paper become
much more apprehensible when they are accompanied by tool sup-
port. In the IE or BF formalisms, e.g., a tool that shows rule overlaps
would be very helpful.

In general, we take up the position that rule compilation and main-
tenance should be considered a programming task. As such, it could
benefit from established software engineering methods like coding
style-guides, testing or verification.

REFERENCES
[1] S. M. Davis, Future Perfect, Addison-Wesley, 1987.
[2] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic pro-

gramming’, in Proc. 5th Intl. Conf. on Logic Programming, pp. 1070–
1080. The MIT Press, (1988).

[3] A. Haag, ‘Sales configuration in business processes’, IEEE Intelligent
Systems, 13(4), 78–85, (July/August 1998).

[4] D. Mailharro, ‘A classification and constraint-based framework for con-
figuration’, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AI EDAM), 12(4), 383–397, (1998).

[5] D.L. McGuinness, ‘Configuration’, in The Description Logic Hand-
book, eds., F. Baader, D. McGuinness, P. Nardi, and P. Patel-Schneider,
397–414, Cambridge University Press, (2003).

[6] S. Mittal and F. Frayman, ‘Towards a generic model of configuration
tasks’, in Proc. of the 11th Intl. Joint Conf. on Artificial Intelligence,
pp. 1395–1401, Detroit, MI, (August 1989).

[7] D. Sabin and E.C. Freuder, ‘Configuration as composite constraint sat-
isfaction’, in Proc. Artificial Intelligence and Manufacturing Research
Planning Workshop, ed., G.F. Luger, pp. 153–161, Albuquerque, NM,
(1996). AAAI Press.

[8] D. Sabin and R. Weigel, ‘Product configuration frameworks – a survey’,
IEEE Intelligent Systems, 13(4), 42–49, (July/August 1998).

[9] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin, ‘Formal methods
for the validation of automotive product configuration data’, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI
EDAM), 17(1), 75–97, (January 2003).

[10] M. Stumptner, ‘An overview of knowledge-based configuration’, AI
Communications, 10(2), 111–125, (1997).

[11] R.J. Waldinger and M.E. Stickel, ‘Proving properties of rule based sys-
tems’, Intl. J. Software Engineering and Knowledge Engineering, 2(1),
121–144, (1992).


