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Abstract. We present OKEANOS, a distributed service-based agent framework
implemented in Java, in which agents can act autonomously and make use of
stationary services. Each agent’s behaviour can be controlled individually by a
rule-based knowledge component, and cooperation between agents is supported
through the exchange of messages at common meeting points (agent lounges).
We suggest this general scheme as a new parallelization paradigm for Symbolic
Computation, and demonstrate its applicability by an agent-based parallel imple-
mentation of a satisfiability (SAT) checker.

1 Introduction

Symbolic Computation comprises Computer Algebra on the one hand, and Computa-
tional Logic on the other hand. It is increasingly acknowledged that Symbolic Compu-
tation will play an essential role in future problem solving environments (PSEs). Where
it is theoretically applicable and practically feasible, it yields answers with the quality
of mathematical proofs. Moreover, answers may be given at very high levels of abstrac-
tion, containing symbolic parameters.

Due to the very high level of abstraction at which Symbolic Computation takes
place, it is characterized by high computational demands and highly irregular and data
dependent control flows. At the same time, there is practically no hardware support (e.g.
for big integer arithmetic). However, there is a great potential for parallelization. Par-
allel Symbolic Computation is therefore an interesting research topic. Since automatic
parallelization of Symbolic Computation algorithms is rather difficult due to highly dy-
namic data structures and irregular control flow, our approach is to investigate middle-
ware architectures and associated programming paradigms which will support human
programmers in parallelizing their sequential code base. As we move towards more
processors and even less homogeneous and larger scale networks, it is time to explore
more flexible and loosely coupled parallel architectures.

In this paper we explore the use of agent based middleware with a parallelization
paradigm that is based on a stricter separation of the sequential code base from aspects
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dealing with the parallelization, such as making parallelization decisions, communi-
cating, and distributing and balancing computational load. Our OKEANOS middleware
provides an infrastructure for mobile agents which may access computational services
and may communicate by passing messages in KQML [5], using Remote Method Invo-
cation only as a general transport layer. The agents themselves are implemented in Java
[9] and may contain rule-based knowledge interpreted by the Java expert system shell
Jess [6], and they are supported with distributed information about the computational
load provided by agent-related middleware services.

The agent based style of parallelization is much less synchronized than a client /
server style. In our agent based approach, the sequential code is left largely intact, and
the parallelization aspects are factored out to the level of agents. In this sense it bears
some resemblance to Aspect-oriented programming [14].

We evaluate the OKEANOS system with a parallel satisfiability (SAT) checker for
Boolean logic. Although theoretically intractable, practical advances have opened up
important applications to SAT checkers, such as hardware verification or scheduling
problems [1, 12]. Due to the large volumes of data in industrial applications, any signif-
icant advance in the speed of SAT checking is likely to open up new classes of practical
problems. Our implementation is the computational core of an industrial system which
we are developing for DaimlerChrysler AG. Its application will be in checking the con-
sistency of symbolic product model data bases for trucks and passenger cars [15].

2 OKEANOS Agent Framework

2.1 Introduction

OKEANOS is an agent-based middleware framework for processing and distributing
complex computational tasks. The primary goals of OKEANOS are to hide the process
of task distribution within a computer network and to offer high-level interfaces for in-
tegrating distributed symbolic applications. The complexity of how, where, and why,
the computional processes are running should be hidden behind uniform middleware-
related interfaces. The notion of a service within OKEANOS establishes a middleware
infrastructure where each participant’s behaviour, i.e. a problem solver agent, is char-
acterized either by making use of a collection of available services, or by offering a
certain service itself. The trading and consuming of services in OKEANOS is done by
exchanging language-neutral messages between participants and service providers.

In order to meet the challenges of scalability in large computer networks such as
the Internet, the service management itself is strictly decoupled from the utilization of
services. Thus, whereas all participants in OKEANOS can communicate asynchronously
with each other or with service providers by exchanging messages, a distinct manage-
ment process is responsible for keeping the service infrastructure consistent. It is up to
the middleware to provide appropriate communication facilities as the facilitators [7]
for exchanging messages between participants in a general manner.

While OKEANOS is completely implemented in Java [9], the implementation of
potential service providers is not necessarily bound to Java. For example, they can be
integrated into OKEANOS either by using the Java Native Interface (JNI) or by using



a client/server like communication mechanism. In the latter one, the service provider
would act as a manager which forwards service requests to a remote server. These kind
of requests can be transferred by applying the paradigm of Remote Procedure Call or
by using ordinary socket-based communication styles. In Section 3 a symbolic com-
puting engine, a propositional satisfiability checker, is integrated into OKEANOS as a
calculation service by interfacing to its C++ implementation using JNI. Thus, OKE-
ANOS forms the core component of a heterogeneous, distributed infrastructure which
is characterized by services implemented in a wide range of programming languages.
Moreover, by choosing Java as the implementation language, all OKEANOS compo-
nents can be used uniformly on several platforms, as described in Section 3.5.

In the following sections we give a description of the main design principles of
OKEANOS.

2.2 Framework Components

In OKEANOS there are two basic components: lounges and agents. A lounge is located
at a host machine within a computer network like the Internet, providing a service-
centered processing environment for agents. It offers the computing infrastructure for
agents on top of the underlying host machine. A lounge supports the management of
various kinds of services like a directory and messaging service. A new lounge is added
to OKEANOS by registering itself to a well-known registry server called observer. The
observer maintains a table of all registered and active lounges. By registering at the
observer, the new lounge receives a list of callback entries of all other lounges. It is up
to the directory services to propagate the new lounge and to synchronize its directory
entries.

To minimize the complexity of an agent-based middleware framework, there is a
strict distinction between two kinds of agents in OKEANOS: stationary and mobile
agents. A stationary agent is located at one single lounge which it can not leave. Its
primary task is to implement and to provide services to other agents like querying the
lounge about locally available and registered application services. The complete com-
munication infrastructure in OKEANOS is designed as a general service which is man-
aged by stationary agents called portal agents. In contrast to stationary agents, mobile
agents (MA) are characterized by their potential to move among lounges transparently
by using the appropriate communication service available at the local lounge. Since
the communication infrastructure is hidden behind the notion of a service, the agent
logic of MAs has only to deal with the core application-related logic which facilitates
the development of MAs as discussed in Section 3.3 and as illustrated in Figure 1a.
When moving between lounges, MAs keep their state and behaviour. The lounge at the
destination host is responsible for restarting the transferred MA correctly.

Lounges and agents are designed as framework components to establish a high-
level, semi-complete software architecture which can be specialized to produce custom
applications [4]. They form an abstract set of classes and interfaces among them which,
taken together, set up a generic architecture for a family of related applications [10, 11].
In order to design an agent-based distributed application in OKEANOS, the application
requirements have to be clearly identified in order to distinguish between such func-
tionalities which can be addressed at the framework level, i.e. at the service level of



Fig. 1. a) Interaction between application logic and services located at lounges; b) Flow of control
within a Jess-based agent

OKEANOS, and the application level. The benefit of shifting requirements to the more
abstract framework level is in facilitating the design and implementation of the remain-
ing application logic. Furthermore it increases the reuse by other applications which
in turn eases their development. Among the patterns discussed in [13] are the Layered
Agent, Broker, and Reasoner pattern which form the basis for the design of agents in
OKEANOS.

2.3 Communication Concepts

Since interaction between agents can exhibit a complex structure, the paradigm of re-
mote method invocation is too restrictive. Therefore communication within OKEANOS

is characterized by the concept of message passing using the Knowledge Query Manip-
ulation Language (KQML) [5]. KQML provides a general message container for pos-
sibly different types of message contents. It communicates dedicated properties about
the transferred content of a message, rather than communicating within some special
language. A mailbox is assigned to each agent which is basically a buffer for incoming
and outgoing messages, as depicted in Figure 1a. The mailbox supports asynchronous
communication between agents and lounges since it does not interfere directly with the
agent’s flow of control. Each agent is responsible for the management of its mailbox by
itself. In OKEANOS, Remote Method Invocation (RMI) serves as a transport layer for
messages which are sent between lounges. Since the communication interface between
lounges does not change over time regardless of the number of lounges and type of mes-
sages, no additional communication-related code has to be provided [18], i.e. such as
compiled static interfaces like stubs and skeletons. Instead, KQML messages are used
as generic interfaces to initiate remote agent requests and to transfer mobile agents.

Using messages as the exclusive communication medium provides an extensible
and adaptable approach to an uniform management of a possibly wide range of different
agent communication interfaces, as discussed in [18]. As far as implementation issues
are concerned we need only one communication interface within the entire distributed
system which reduces potential incompatibilities between agents in OKEANOS.

Nevertheless, in OKEANOS other communication paradigms can be integrated trans-
parently and made available to the entire system by wrapping them into a service. The
interaction of a MA is restricted to the local lounge. If it wishes to communicate with



agents or services at remote lounges, it has to signal its desire to the local lounge by
sending an appropriate message to the portal agent which in turn forwards the agent’s
requested actions.

2.4 Directory Service

The directory service in OKEANOS is designed as a distributed bulletin board for an-
nouncing application services. It is kept up to date by using so-called Updater Agents
(UA). An UA is small in code size (about 1 KByte). It updates the directory of each
lounge. From a lounge’s point of view, UAs are handled with high priority since their
process of updating each directory is very short in time.

One directory service is assigned to each lounge. There are two types of directory
entries: global and local entries. A local entry describes a service which is offered only
locally by a service provider at the respective lounge. A global entry specifies a ser-
vice which is available at the respective lounge and can be accessed by other lounges
and agents, respectively. The global part of the directory service is replicated at each
lounge in order to minimize remote communication overhead: An agent’s service re-
quest can be processed locally without remote communication to other lounges. There-
fore it caches globally available services at each lounge and speeds up the lookup of ser-
vices by reducing the overhead of remote communication tremendously. This caching
mechanism aids the scalability of the number of lounges and agents in OKEANOS be-
cause of the decreased remote communication as opposed to a more central directory
server.

The global part of the directory service serves as a snapshot of the state of all ser-
vices of the distributed system. It is contacted by agents to make application-related
decisions which need to have the most up-to-date information of the overall distributed
system. The updating mechanism in OKEANOS is characterized by its simplicity and
robustness. However, there is a small window of inconsistency of each globally repli-
cated directory entry since the service update is processed in a decentralized manner
avoiding a central manager for coordinating and propagating the updates appropriately.
To eliminate potential bottlenecks in large-scale systems, the design of OKEANOS does
not insist on the overall consistency of the distributed directory services at all times. If
an MA contacts such a service at a remote lounge which is actually not available any
more, it simply has to adjust its behaviour to the new state of the system. For example,
this MA can go back to the lounge it has come from. By this, one has a tradeoff between
a strict and a weak consistent point of view of the distributed directory service. Since
OKEANOS is a service-centric system with autonomous MAs acting on their own, it is
not predictable where and how agents interact with each other 1. The primary goal of
the distribution of the global directory entries is to provide a service for registering and
propagating all types of services in a simple, robust and scalable manner.

1 In Section 3.5 each performance measurement for a given number of particating lounges ends
up with a slightly different runtime because of the unpredictable behaviour of the agents and
the non-deterministic nature of the SAT problem.



2.5 Intelligent Agents

Agents in OKEANOS are either pure KQML-agents or Jess-agents. Jess [6] is a rule en-
gine and scripting environment written entirely in Java. Agents based on Jess have the
capacity to reason, using knowledge which is supplied in the form of declarative rules.
Jess-agents are integrated into OKEANOS in a natural way in that declarative rules are
wrapped into KQML messages and vice versa, as shown in Figure 1b. A Jess-agent
consists of two parts. The KQML part of the agent is responsible for managing in-
coming and outgoing messages and for transforming KQML messages into Jess-based
declarative rules. Then, after the Jess engine has interpreted the incoming rules, new
facts are added (assert) to the knowledge base, or existing facts are retracted (re-
tract) from it, depending on the content of the incoming messages. The resulting
knowledge base of a Jess-agent determines its state and is characterized by its dynamic
change. It also depends directly on the processing environment, i.e. the lounge where
it is anchored. Therefore, integrating Jess into OKEANOS provides an infrastructure for
developing agents which have facilities related to the area of artificial intelligence.

Jess-agents encourage the design and implementation of autonomous MA which
adapt to changes of the location of lounges, of the global availability of services, and
of application-related knowledge in a rule-based fashion. In contrast to Jess-agents,
pure KQML-agents pursue an object-oriented mechanism for managing their dynamic
behaviour accordingly. This resulting implementation is characterized by vast quantities
of agent code which is hard to maintain and to adjust. Nevertheless, the increased code
size of such an agent contradicts the scalability and bandwidth issues of large-scale
networks. Since the memory footprint of a Jess-agent in OKEANOS is rather small, it is
suitable for designing autonomous agents for the World Wide Web.

2.6 Small Memory Footprints

A further design goal of agents in OKEANOS is to facilitate their use within large-scale
distributed systems such as the Internet. Therefore agents and their processing envi-
ronments, the lounges, have to be small in code size in order to minimize the network
bandwidth consumption. Additionally, they require less processor time to be serialised.
As far as agents are concerned, Jess-agents fulfill the requirement of minimal code size
because most of the application logic is specified as declarative rules. For example, the
Jess-based agents described in Section 3.3 contain the entire application logic for a dis-
tributed symbolic computation and are as small as 25 KByte. It is adequate to transmit
only the rules and facts, since an instance of the Jess engine is provided by each lounge.
An agent’s serialized code size is even further reduced if the participating lounges use
sophisticated compression techniques for transferring agents 2. As far as a lounge is con-
cerned, the size depends on the number of services which are made globally available.
The size of the serialized lounge is between 400 KByte and 600 KByte.

2 For example, customized socket factories of the Remote Method Invocation facility of Java
enables such a data compression by applying several compression formats, such as GZIP or
ZIP.



3 SAT: An Application from Symbolic Computation

We consider as an application from the realm of Symbolic Computation the well-known
satisfiability problem for Boolean formulae (SAT). Important applications of the SAT
algorithm include cryptography [16], planning and scheduling [12], model checking for
hardware verification [1], checking formal assembly conditions for motor-cars [15], and
finite mathematics (e.g. quasigroup problems [19]). The computational complexity of
these problems can vary considerably, where the hardest practical problems can require
thousands of hours of running time. So parallelization is an important issue.

The SAT problem asks whether or not a Boolean formula has a model, or, alterna-
tively, whether or not a set � of Boolean constraints has a solution. Usually the con-
straints are kept in conjunctive normal form (CNF). Each constraint is then also called
a clause and consists of a set of literals, where a literal is a variable or its negation. A
clause containing exactly one literal is called a unit clause. A solution assigns to each
variable a value (either TRUE or FALSE), such that in each clause at least one literal
becomes true.

3.1 The Davis-Putnam Algorithm

Basically, by trying all possible variable assignments one after the other, one finally
finds a solution to a given SAT-instance, provided that such a solution exists. The Davis-
Putnam (DP) algorithm [3] performs an optimized search by extending partial variable
assignments, and by simplifying the resulting subproblems by applying two operations
known as unit propagation (consisting of unit subsumption and unit resolution) and
pure literal deletion (see Figure 2).

boolean dp(ClauseSet �)
�

while ( � contains a unit clause ��� ) �
delete clauses containing � from �; // unit-subsumption
delete � from all clauses in �; // unit-resolution

�
if ( � � � ) return FALSE; // empty clause?
pureLiteralDeletion();
if ( � � � ) return TRUE; // no clauses?
choose a literal � occurring in �; // case-splitting
if ( dp(� � ���) ) return TRUE; // first branch
else if ( dp(� � ���) ) return TRUE; // second branch
else return FALSE;

�

Fig. 2. The Davis-Putnam Algorithm

In the following, we associate with each run of the DP algorithm a search tree,
which is a finite binary tree generated by the recursive calls of the case splitting step.



The nodes of the tree represent executions of the�� algorithm with a fixed input clause
set �. We will label the outgoing edges of each node with the literal � resp. � which is
added to � to generate the new subproblem.

3.2 Parallel SAT checking using Agents

This section deals with the basic concepts of parallel satisfiability checking with the
Davis-Putnam algorithm using an agent approach. Section 3.3 provides detailed infor-
mation about the realization of a parallel distributed SAT prover within the OKEANOS

agent framework.

Overview of the Parallel Execution Process. For the parallel execution of the Davis-
Putnam algorithm the search space has to be divided into mutually disjoint portions to
be treated in parallel. However, static generation of balanced subproblems is not feasi-
ble, since it is impossible to predict the extent of the problem reduction delivered by the
unit propagation step in advance. Consequently, when parallelizing the Davis-Putnam
algorithm we have do deal with considerably different and completely unpredictable
run-times of the subproblems.

We adopt a search space splitting technique presented in [19] which is based on
the notion of a guiding path. A guiding path describes the current state of the search
process. More precisely, a guiding path is a path in the search tree from the root to
the current node, with additional labels attached to the edges. Each level of the tree
where a case splitting literal is added to clause set �, i.e. each (recursive) call to the DP
procedure, corresponds to an entry in the guiding path, and each entry consists in turn
of the following information:

1. The literal � which was selected at the corresponding level.
2. A flag indicating whether or not backtracking has already been done for that level;

we use B to indicate backtracking and N to state that no backtracking is required.

Each entry in the guiding path with flag B set is a potential candidate for a search
space division. The whole subtree rooted at the node corresponding to this entry may
be examined by another independent agent.

The guiding-path approach allows dynamic problem decomposition, as at any point
of time during the search any agent may decide to further split its portion of the search
space. Moreover, the selected literals coincide with the selections of the sequential ver-
sion. Thus, approved literal selection strategies may be carried over to the parallel agent-
based version of the DP algorithm.

Implementation of Search Space Splitting. To allow search space splitting, we have
modified the DP algorithm to accept a guiding path object as an additional input pa-
rameter. A call to the extended DP algorithm with a non-empty guiding path makes the
case-splitting literals to be chosen as indicated by the path element of the corresponding
level instead of by querying the literal chooser. Additionally, in all levels backtracking,
i.e. the second recursive call to DP, is only performed when the corresponding flag is
set B.



When a search-space split is requested, the computation is asynchronously stopped
by the agent and the actual guiding path � is used to build two new paths � � and ��.
Then a new agent is started with guiding path ��, and the interrupted agent continues
work with a modified guiding path ��.

The computation starts with one agent to which the whole search space is assigned.
The agents are notified about changes concerning the availability of processing capacity.
Every time a free processor is found, a split is performed. This happens, for example,
when an agent has completed the search in the assigned subtree without finding a model.
As mentioned above, due to the nature of the SAT problem the size of a subtree cannot
be predicted in advance. In turn this leads to an unpredictable splitting behavior. Dealing
with this dynamic evolution of parallelism is the major challenge in parallelizing SAT
provers.

3.3 Realization of the SAT prover in OKEANOS

The implementation of the parallel SAT prover in OKEANOS is basically made up of
four types of agents, which are discussed in greater detail in the following paragraphs.

DP Service Agent Agents of class DPServiceAgent are stationary agents that actually
perform the search in a subtree by executing the DP algorithm. The core Davis-Putnam
algorithm is a legacy application implemented in C++. It is integrated as a native library
module available in every lounge of the system. DPServiceAgents can use the methods
of the native code via the Java Native Interface. The C++ implementation is wrapped
by the DPServiceAgents and thus can act as a service provider for the CalcService to
all OKEANOS agents. The CalcService is only registered as long as local processing
capacity is available.

DP Master Agent. Each search process is initiated by a stationary agent of class DP-
MasterAgent, which first creates an initial agent of type DistributorAgent, and then
sets it up by sending several KQML performatives. These messages contain the input
clauses and the guiding path, which in this case is empty. Thus, the whole search space
is assigned to the first agent.

During its lifetime, the DPMasterAgent waits for replies from DistributorAgents
containing their partial results. As soon as a model is found, the whole search is ter-
minated. Until then, the master agent periodically checks for CalcServices that are cur-
rently occupied and thus indicate ongoing search. If no such CalcService exists, all
work is done and consequently the whole search space has been traversed without find-
ing a model. In this case the set of input clauses is not satisfiable and the computation is
completed. As DistributorAgents keep track of which part of the search tree they have
handled or given to other agents, the DPMasterAgent can finally detect missing agents
(e.g. due to a crashed lounge) and restart a partial search when necessary in order to
complete the whole search.

Distributor Agent Agents of class DistributorAgent are mobile agents that are respon-
sible for solving a given SAT problem. They are moving around, looking for a service



that is capable of solving such a kind of problem (CalcService in our case). They com-
pete with other agents for these special resources. The task of finding a suitable service
is supported by an expert system built into every DistributorAgent. As soon as a Dis-
tributorAgent has gained access to a CalcService, it places a request for calculation, and
waits until this request is granted. Then the input clauses and guiding path are passed
to the CalcService. The CalcService reports the result of the computation as soon as it
is available, which is then taken back to the DPMasterAgent by the DistributorAgent.
Access to the CalcService is always managed and synchronized via a DPServiceAgent,
which acts as a service provider within OKEANOS for this service.

Strategy Service Agent At each lounge where a DPServiceAgent resides, there is
another stationary agent called StrategyServiceAgent which offers a StrategyService.
DistributorAgents may consult this service about whether or not they should split their
search space. The StrategyService can be accomodated to the specific environment of
the lounge, such as the processor speed or kind of network connection. In case a deci-
sion is made to perform a split, the following steps are taken:

1. The DistributorAgent requests the DPServiceAgent to asynchronously stop the cal-
culation and return the current guiding path as result.

2. The DistributorAgent splits the guiding path and passes one of these guiding paths
together with the clause list to a newly created DistributorAgent.

3. The new DistributorAgent is sent off to a lounge with an unoccupied CalcService.

4. Finally, the interrupted CalcService is restarted with the second guiding path gen-
erated in step 2.

3.4 Benefits of the Agents Approach

The key benefit of using the described approach is the service-oriented character of
OKEANOS agents. Each computation-related task such as the lookup of the calculation
service, the determination of split times and the right strategy for splitting is encapsu-
lated within different kinds of services. Thus there are strategy and calculation services
provided by each lounge. Since each of these services is only attached to one lounge,
they can be tailored to the specific lounge’s environment, such as the type and location
of the host machine. For example each lounge can have its own dedicated strategy ser-
vice for carrying out the best splits at this lounge. However, agents are not bound to use
the provided services at all. They also can work out splits completely autonomously
without involving such a local service provider.

In contrast to a central master process in a classical master slave parallelization tech-
nique, our proposed agent approach is more flexible because by employing autonomous
agents reaction to load changes is possible in a decentralized manner. Basically, paral-
lelism in the agent approach is achieved through the process of migration of agents
within a pool of compute-service providers.



3.5 Empirical Results

For the realization of performance measurements we have selected three benchmarks
(dubois20, dubois23 and dubois26) from the publicly available 3 DIMACS benchmark
suite for SAT provers. The chosen benchmarks have different sequential running times
and all exhibit a highly irregular search splitting behaviour.

Fig. 3. Results of the Performance Measurements

The measurements where carried out on a heterogeneous computing pool consisting
of machines of the following types: Two Sun Ultra E450 with 4 processors each at
400MHz running under Solaris 7, and up to four PentiumII PCs at 400MHz running
under Windows NT 4.0. For all measurements the wall clock time in seconds was taken.

Figure 3 shows the results for 3, 5 and 10 lounges and relates them to the sequential
running times. For each number of lounges the times of three program runs are shown.
Figure 3 shows also the total number of agents that were involved during the computa-
tion. Each lounge provided a simple strategy service which suggests to initiate a split
and sends a distributor agent as soon as a calculation service within OKEANOS is made
available. This strategy did not take into account the overall number of lounges and
number of calculation services. Each performance measurement for a given number of
participating lounges ends up with a slightly different runtime because of the unpre-
dictable behaviour of the agents and the non-deterministic nature of the SAT problem.

Generally, the overall speedup is well suited for parallelizing large search spaces
(dubois26.cnf, seq. running time about 10 hours). If the sequential running time is rather
short (dubois20.cnf, seq. running time about 8 minutes), the performance gain of our
agent approach is less evident. When adding more lounges to the distributed computa-
tion infrastructure, the number of generated agents increases accordingly.

Our future work will focus on more sophisticated splitting strategies in order to
adapt the number of generated agents more appropriately to the current number of
globally available computing services. The main goal is to find adequate, cooperative
strategies which match the dynamic and unpredictable character of SAT problems.

3 ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/



4 Related Work

JavaParty [17] provides transparent remote Java objects and remote threads using pre-
compiling techniques. Java// (ProActive) [2] is a 100% Java library for seamless cross-
paradigm high performance computing. Both environments are targeted towards high
performance computing in pure Java. In contrast, our approach uses Java for the paral-
lelization infrastructure, while the actual algorithm is provided as a native code module
and is accessible as a service.

MATS [8] is a mobile agent system for distributed processing. It is based on collec-
tions of agents which form teams to solve distributed tasks. The user is may be forced
to structure the problem in such a way that it can be easily broken into a set of co-
operating tasks, whereas in OKEANOS it is the responsibility of the autonomous agent
to figure out an appropriate plan to distribute the tasks. The granularity of distribution in
OKEANOS is directly related to each agent’s strategy which is determined by applying
techniques from the area of artificial intelligence.

PSATO [19] is a distributed/parallel prover for propositional satisfiability for a net-
work of workstations. In contrast to our work, a master slave model is applied, where a
central master is responsible for the division of the search space and for assigning the
subtasks to the slaves.

5 Conclusion

In this paper, we have described a distributed infrastructure that provides mobility and
application-level services to software agents. Its design as a framework enables the
conceptual and operational reuse of services in a generic manner to support the scal-
ability issues for agents in large computer networks. The agent framework supports
asynchronous communication and uses message passing via an open and standardized
message format. By integrating techniques from the area of artificial intelligence, the
complexity of the design and implementation of autonomous mobile agents for dis-
tributing tasks is reduced tremendously. We have implemented the service agent frame-
work in Java to illustrate its feasibility. A distributed symbolic computation is then used
to show the benefits.

It turns out that a service framework for mobile agents is very suitable for dis-
tributed, symbolic computing environments as it allows to benefit from its framework
services in a general acessible manner and provides and extensible computing platform
over wide area networks.
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