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W. Blochinger, C. Sinz, and W. Küchlin. A universal parallel sat checking kernel. In To appear in Proc. of the Intl. Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2003), 2003.

Abstract

We present a novel approach to parallel Boolean satisfi-
ability (SAT) checking. A distinctive feature of our parallel
SAT checker is that it incorporates all essential heuristics
employed by the state-of-the-art sequential SAT checking
algorithm. This property makes our parallel SAT checker
applicable in a wide range of different application domains.
For its distributed execution a combination of the strict mul-
tithreading and the mobile agent programming model is em-
ployed. We give results of run-time measurements for prob-
lem instances taken from different application domains, in-
dicating the usefulness of the presented method.

Keywords: Parallel SAT Checking, Parallel Symbolic
Computation, Multithreading, Mobile Agents.

1 Introduction

The SAT problem asks whether or not one can find for a
given Boolean formula a variable assignment such that the
formula evaluates to TRUE. SAT is of particular relevance,
since problems from a wide range of disciplines can be en-
coded as SAT instances. Prominent examples of applica-
tion domains of SAT are hardware verification, cryptanaly-
sis, planning, and scheduling. Consequently, SAT checkers
(also called SAT provers) can be used as a universal tool for
solving problems from manifold application domains.

Since SAT is NP-complete [8], for all currently known
SAT checking algorithms there exist problem instances ex-
hibiting exponential run-times in the number of boolean
variables. However, sophisticated heuristics have been
found that can dramatically reduce the computation time,
especially for many problem classes of practical relevance.

For these cases, parallel SAT checking is an important
means to additionally reduce the run-time.

The classical Davis-Putnam (DP) SAT algorithm [10, 9]
has been improved essentially by incorporating two classes
of heuristics: sophisticated branching rules [11] and dy-
namic learning [12]. Both heuristics can significantly re-
duce the search space of variable assignments which has to
be traversed for finding a solution or for proving that no
solution exists. Often speedups of several orders of magni-
tude can result when applying an appropriate heuristics. But
the actual effect of these heuristics depends largely on the
problem instance. Thus an issue which still remains to be
handled is to choose a proper heuristics for a given problem
instance.

In previous work in parallel SAT checking we investi-
gated the parallelization of SAT checkers that employ dy-
namic learning techniques [4, 5, 6]. In this paper we deal
with the tight integration of both types of heuristics, branch-
ing rules and dynamic learning in oder to amplify the effects
of both heuristics when applied in parallel.

The rest of the paper is organized as follows: Section 2
gives a brief introduction to modern SAT checking meth-
ods. Section 3 describes our universal parallel SAT check-
ing kernel in detail. The results of run-time measurements
are discussed in Section 4. Sections 5 and 6 give a compar-
ison of related work and a conclusion, respectively.

2 Modern SAT Checking Techniques

In this section we give some basic definitions and a brief
overview of the state-of-the-art sequential SAT algorithm
in order to provide appropriate background information for
understanding the subsequent presentation of our parallel
SAT checker. For a detailed treatment of these topics the
reader is referred to the literature.



2.1 Basic Definitions

We consider Boolean formulae in Conjunctive Normal
Form (CNF) which are defined as conjunctions (∧) of
clauses, where a clause is a disjunction (∨) of literals, and
a literal is a propositional variable or its negation. A clause
containing exactly one literal is called a unit clause, the
empty clause ∅ is a clause containing no literals at all. A
solution to a SAT problem instance assigns to each variable
a value (either TRUE or FALSE), such that in each clause at
least one literal becomes TRUE, and thus all clauses are si-
multaneously satisfied. If one of the clauses of a formula is
the empty clause it has no solution.

Since in a formula in CNF the logical connectives (∨ and
∧) are determined by its structure, they are often omitted.
Clauses are then represented as sets of literals, and formulae
as sets of clauses. For example, the Boolean formula

(x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ x3,

which is in CNF, translates into the set of clauses

{{x2, x3}, {x1, x3}, {x1, x2, x3}, {x3}}.

2.2 Davis-Putnam Algorithm

Basically, by trying all possible variable assignments one
after the other, one can find a solution to a given SAT prob-
lem, resp. prove its unsatisfiability. Evidently, the run-time
of this naive procedure is exponential in the number of vari-
ables. The more sophisticated Davis-Putnam (DP) algo-
rithm [10, 9] performs an improved search by a stepwise
extension of partial variable assignments. At each step, the
resulting subproblems are simplified by recursively apply-
ing two reduction operations called unit subsumption and
unit resolution. If an empty clause has been derived, back-
tracking is performed, and if an empty clause set results, a
solution is found (see Figure 1). This process can also be
described as an unbalanced search tree, where the leaves ei-
ther represent a solution (in each clause at least one literal
becomes TRUE under the current variable assignment) or a
conflict (under the current variable assignment all literals of
at least one clause are FALSE).

As mentioned earlier the performance of this basic DP
procedure can be enhanced by two types of heuristics: ap-
plying special branching rules and incorporating dynamic
learning.

The branching rule is responsible for selecting a new lit-
eral at each step of the extension of the partial variable as-
signment. It turns out that this selection can greatly affect
the performance of subsequently applied reduction opera-
tions and consequently affects the performance of the whole
DP method. Substantial work has been carried out for find-
ing beneficial branching rules [11] leading to a rich set of

available rules to choose from. However, there is no uni-
versal branching rule which fits well for all possible prob-
lem instances. Our SAT checker provides the following six
built-in rules (and also allows the easy integration of addi-
tional rules):

• FOV: Choose first open literal occurring in clause set.

• SPC: Choose a literal from the shortest positive clause.

• MO: Choose a literal with the maximal number of oc-
currences.

• MBO: Choose a literal with the maximal number of
binary occurrences.

• SMB: First build the set of all literals occurring in pos-
itive clauses of minimal length, and choose a variable
from this set with the highest number of binary occur-
rences in all clauses.

• SHM: First build the set of all positive literals oc-
curring in non-Horn clauses of minimal length, and
choose a variable from this set with the highest number
of binary occurrences in all clauses.

Silva and Sakallah added to the DP algorithm a dynamic
learning process carried out during the search [12]. At each
conflict leaf of the search tree, a conflict analysis procedure
produces additional knowledge about the problem instance
in the form of a so called conflict induced clause (also called
lemma) that may help to prune the search tree during the
further search process. A conflict induced clause reflects a
minimal variable assignment that causes the occurrence of
the considered conflict. When added to the input clause set
a conflict induced clause prevents the search process from
reproducing this conflict in other regions of the search space
and therefore can prune the search space to be treated. It can
be shown that the addition of lemmas to the clause set does
not affect the correctness of the DP algorithm. However
the growing set of input clauses also causes a slowdown of
the unit subsumption and unit resolution procedures which
may outweigh the performance gain of search space prun-
ing. Therefore it is common practice to limit additional lem-
mas to those containing less than a fixed number of literals.

3 The Parallel SAT Checking Kernel

We describe our parallel SAT checking kernel in a bot-
tom up manner. A brief overview of the employed parallel
middleware DOTS is followed by a discussion of details of
the parallel execution process.



boolean DP(ClauseSet S, Level d )
{

while ( S contains a unit clause {L} ) {
delete clauses from S containing L; // unit-subsumption
delete L from all clauses in S; // unit-resolution

}
if ( ∅ ∈ S ) { // empty clause?
generate conflict induced clause CC; // conflict management
add CC to S;
return FALSE; // backtracking

}
if ( S = ∅ ) return TRUE; // empty clause set?
choose a literal Ld+1 occurring in S; // apply branching rule
if ( DP(S ∪ {{Ld+1}}), d + 1 )
return TRUE; // first branch
else if ( DP(S ∪ {{Ld+1}}), d + 1)
return TRUE; // second branch
else return FALSE;

}

Figure 1. Sequential Davis-Putnam Algorithm

3.1 DOTS Middleware

DOTS [3] is a system environment for building and exe-
cuting distributed parallel C++ applications which is able to
integrate a wide range of different computing platforms into
a homogeneous parallel environment. Up to now, DOTS has
been deployed on (heterogeneous) clusters composed of the
following platforms: Microsoft Windows 98/NT/2000/XP,
SUN Solaris, SGI IRIX, IBM AIX, FreeBSD, Linux, QNX
Realtime Platform, and IBM Parallel Sysplex Cluster [2].

3.1.1 Parallel Programming Models

DOTS provides several parallel programming models (each
represented by its own API) forming a comprehensive set
of tools for realizing distributed parallel applications.

• Task API
The Task API represents the basic API layer of DOTS
on which all other APIs are based. DOTS task objects
are instances of application specific classes which are
derived from the base class DOTS Task and implement
a run() method. The code provided in the run() method
is executed on its own thread when the task object is
scheduled for execution. The base class also provides
methods for explicit program controlled migration of
DOTS tasks.

• Active Message API
The Active Message API provides support for object-
oriented message passing. After a message object is
transferred to its destination node it becomes an active
object, i.e. a new thread is created that executes appli-
cation specific code contained in the message object.

• Multithreading API
Multithreaded computations are generalizations of
asynchronous (remote) procedure calls. The DOTS
Multithreading API provides a compact set of com-
pletely orthogonal primitives for realizing the com-
prehensive class of strict multithreaded computations.
In such computations data-dependencies of a thread
can go to any ancestor in the spawn tree. The
DOTS multithreading programming model is enhanced
with object-oriented features and support for highly-
irregular non-deterministic computations.

• Autonomous Task API
The Autonomous Tasks API can be used to realize task
objects that operate as mobile agents. In contrast to
standard task objects, the execution of an autonomous
task is not determined by the load distribution mecha-
nism of DOTS. Instead, its execution locations can be
explicitly determined by the programmer. For facili-
tating the control of autonomous tasks, the API pro-
vides higher level migration primitives, e.g. for realiz-
ing round trips of mobile agents within the distributed
environment.

In particular, the Multithreading and Autonomous Tasks
parallel programming models are used for implementing
our parallel SAT checking kernel.

3.1.2 System Architecture

The DOTS system architecture is organized in several lay-
ers. The lowest layer is the OS adaptation layer which is
realized using the ACE (ADAPTIVE Communication En-
vironment) toolkit [1]. It homogenizes system APIs for
a wide range of different platforms. On top of the OS



adaptation layer, the DOTS run-time system is built. It
provides several low-level services like object-serialization,
message transmission, data encoding/decoding, TCP con-
nection caching, and support for an internal component-
architecture. Additionally, higher level services like object
migration, node directory, logging, and a load monitoring
framework are provided by the DOTS run-time. All services
are used to implement the DOTS Task API and consequently
all other APIs.

3.2 Hierarchically Parallel SAT checking

3.2.1 Overview

Our approach to build a generic parallel SAT checking ker-
nel combines different forms of logical parallelism on two
hierarchical layers. On the top level, competition paral-
lelism is employed by concurrently executing several incar-
nations of our high-performance SAT-checker PaSAT [13]
on the input problem, each applying a different branching
rule heuristics. On the second level, each PaSAT incarna-
tion establishes a parallel treatment of the problem instance.

The top-level approach of running several variable selec-
tion strategies concurrently provides robustness and stabil-
ity under different applications, while the lower level paral-
lelization in PaSAT provides speed of the individual SAT in-
carnations and consequently a reduction of the overall time
needed to treat a problem instance.

The challenge of our work lies in combining this hier-
archical parallel approach with the sequential lemma gen-
eration heuristic. Note that optimized sequential search al-
gorithms are often hard to parallelize because they tend to
accumulate knowledge in search state which they then use
to take short-cuts. In the case of modern SAT-checking,
knowledge is accumulated in the form of conflict avoidance
lemmas which prevent repeated fruitless searches of sub-
spaces.

For the distributed execution of PaSAT, we solved the
problem of combining lemma accumulation with parallel
search by an approach which lies orthogonal to paralleliza-
tion of the backtracking search. Lemmas found by the con-
current search processes are scooped up by mobile agents
and transported across the nodes of the distributed system
[4]. We now take this approach one level higher and also
use agents to transport lemmas discovered by any one of
the PaSAT incarnations to all other PaSAT siblings. (Note
that each lemma is always a valid consequence of the given
problem instance, regardless under which branching rule it
has been deduced.) This cross-fertilization between incar-
nations with different branching rules causes an additional
reduction of the run-time of each prover instance and con-
sequently a reduction of the overall time needed to treat a
problem instance.

3.2.2 Implementation using DOTS

The realization of the top level competition parallelism is
trivial. For each available branching rule a DOTS thread is
forked which executes the corresponding prover instance on
the given input formula.

Basically, on the second level the parallelization of a
combinatorial search problem is carried out. We accom-
plish this task by employing the DOTS Multithreading API.
Since in the considered case it is generally not possible
to statically generate subproblems of equal size a dynamic
problem decomposition process is required. As stated
above, the execution of a PaSAT incarnation starts with one
thread which has the complete search space assigned. Dur-
ing the whole computation all DOTS threads periodically
monitor the length of the local task queue. If the length
falls below a predefined limit, a new DOTS thread is forked.
The parent thread splits off a region of its search space and
assigns it to the new DOTS thread. Details of the applied
search space splitting heuristics can be found in [14]. The
newly created DOTS thread is queued and can be executed
by another local processor or can be transferred to other
nodes. A thread stealing strategy with randomized victim
selection is employed for load distribution. Since DOTS
supports the comprehensive class of strict multithreaded
computations the results of each thread generated can be
joined by the initial thread and need not be joined by its ac-
tual parent. This ensures scalability and also considerably
simplifies the program code.

The huge amount of new knowledge generated on each
node (at every conflict leaf in the search tree a new lemma
is deduced) makes it impossible to exchange all generated
lemmas while at the same time preserving scalability of the
parallel algorithm. Therefore a strategy for selecting suit-
able lemmas is required. To establish a lemma exchange
between PaSAT incarnations, for each PaSAT incarnation a
mobile agent is created (employing the DOTS Autonomous
Task API) that visits all PaSAT siblings and looks for new
lemmas that fulfill some criteria. As selection criteria the
lengths of the lemmas and the requirement that the consid-
ered lemma is not already subsumed ”at home” is applied.
(A lemma is subsumed when it is already logically implied
in the current state of the search of the agent’s associated
SAT checker instance, its ”home”.) In order to perform this
test, the lemma exchange agent carries with it a description
of which part the home SAT checker is currently working
on, and this description is refreshed every time the agent
visits its home node to unload its collected lemmas.

4 Experimental Results

The parallel system employed for carrying out perfor-
mance measurements consisted of a cluster of 3 Sun Ul-
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Figure 3. Speedups for Benchmark long-
mult15

tra E450, each with 4 UltraSparcII processors (@400 MHz)
and 2 GB of main memory, connected by a 100 Mbps Eth-
erne network.

Four benchmarks from different application domains
have been chosen:

• Planning (bw large.d)

• Hardware Verification (longmult15)

• Quasigroup Existence (qg6-14)

• Logistics (facts7hh.12)

All 6 built-in heuristics (see Section 2) have been em-
ployed. Since a total number of 12 processors was available,
each PaSAT incarnation could be executed on 2 processors
in parallel. The results of the measurements are given in
Figures 2,3,4, and 5. The speedup values are based on
the run-time of the sequential algorithm using the best per-
forming branching rule heuristics for each individual bench-
mark. For all parameter settings 10 parallel runs have been
carried out. Besides the arithmetic mean, additionally the
minimum and maximum speedup values are given, since
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Figure 4. Speedups for Benchmark qg6-14
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the individual run-times exhibited a high dispersion. We in-
vestigated different maximum lengths of lemmas to be col-
lected by the lemma agents. It turned out, that for all con-
sidered problem instances considerable speedups could be
obtained using lemma exchange agents starting with maxi-
mum lemma sizes of 5 to 10.

Moreover, the results show two types of phenomena:
high variabilities in the run-times of executions with the
same input and settings as well as superlinear speedups.
Both can be traced back to the parallel dynamic learning
process. The exchange of lemmas in a distributed system is
highly non-deterministic causing a highly variable distribu-
tion of new knowledge in individual runs. Thus, important
lemmas may not yet be available when treating a particu-
lar region of the search space. Superlinear speedups oc-
cur because of cross-fertilization effects of the two types of
heuristics which are as such not possible in the sequential
algorithm. It is possible, that a lemma is generated using
branching rule A which can never be deduced when apply-
ing branching rule B. Nevertheless, this lemma can be very
effective for reducing the search space in a search process
using branching rule B.



5 Related Work

Böhm and Speckenmeyer presented a parallel SAT
checker on a Transputer [7]. Their work concentrates on
workload balancing between the processors; the DP algo-
rithm executed on each node employs the same branching
rule heuristics, and no lemma generation or exchange is car-
ried out.

PSATO [14] is a distributed propositional prover for
networks of workstations, based on the sequential prover
SATO, which also uses dynamic learning. PSATO is fo-
cused on solving open quasigroup problems. However, in
PSATO no lemma exchange or communication between
tasks is implemented. Also a dedicated master performs
search space splitting. This approach involves additional
communication and the master can easily become a sequen-
tial bottleneck. Moreover, sophisticated load distribution
schemes cannot be realized.

6 Conclusion

In this paper we presented a novel method for paral-
lel SAT checking which incorporates competition paral-
lelism, parallel combinatorial search with dynamic prob-
lem decomposition and a distributed dynamic learning pro-
cess accomplished by mobile agents. This approach per-
mits to beneficially transfer all key heuristics employed by
the state-of-the-art sequential SAT checking algorithm to its
parallel counterpart leading to a cross-fertilization of heuris-
tics.
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