
Abstract Testing: Connecting Source Code
Verification with Requirements

Florian Merz, Carsten Sinz
Dept. for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{florian.merz, carsten.sinz}@kit.edu

Hendrik Post, Thomas Gorges, Thomas Kropf
Robert Bosch GmbH

Leonberg / Stuttgart, Germany
{hendrik.post, thomas.gorges, thomas.kropf}@de.bosch.com

Abstract—Traditionally, test cases are used to check whether
a system conforms to its requirements. However, to achieve good
quality and coverage, large amounts of test cases are needed,
and thus huge efforts have to be put into test generation and
maintenance. We propose a methodology, called Abstract Testing,
in which test cases are replaced by verification scenarios. Such
verification scenarios are more abstract than test cases, thus fewer
of them are needed and they are easier to create and maintain.
Checking verification scenarios against the source code is done
automatically using a software model checker. In this paper we
describe the general idea of Abstract Testing, and demonstrate its
feasibility by a case study from the automotive systems domain.

I. INTRODUCTION

Producing high quality software is cost-intensive and time-
consuming. Whereas traditional software engineering tech-
niques based on testing (on different levels) are widely em-
ployed and can be considered standard today, the effort that
has to be put into software quality assurance is still immense.
It can even dominate the total cost of a software project. But
still errors in software remain, causing costs in the billions for
the U.S. economy alone [25].

Formal verification techniques promise to raise the level
of confidence in software products. The techniques available
in formal verification range from precise interactive theorem
proving on abstract models of the software [12], [20], over
fast abstract interpretation procedures [10], [11], [26] (which
often, however, possess the drawback of producing many false
alarms), to methods based on source code model checking
(like counterexample-guided abstraction refinement [5], [18],
[19], [28], or bounded model checking [7]). As of today, these
techniques are mainly employed in safety-critical areas like the
avionics and automotive industry, where high quality standards
are vital (besides being required by legal regulations). With
recent progress in fully automatic verification techniques (scal-
ability, ease of use), e.g. Microsoft’s Verisoft (XT) project[31],
these techniques become available for a more widespread use,
though.

In this article we describe a new technique that combines
software bounded model checking with requirements analysis.
The resulting technique, that we call Abstract Testing, can be

This work was supported in part by the “Concept for the Future” of
Karlsruhe Institute of Technology within the framework of the German
Excellence Initiative.

regarded as a generalization of traditional testing, in which
a set of test cases is replaced by a Verification Scenario.
A verification scenario combines a possibly large set of
test cases into one proof obligation for a software model
checker. The proof obligation is typically formulated in an
assume/guarantee style, and its syntax closely resembles the
programming language the tester is already accustomed to.
Thus no new formalization language has to be learned by the
testing personnel.

The strength of our proposed method—and what also dif-
ferentiates it from previously published work—lies in the con-
nection with requirements. Often a one-to-one correspondence
between abstract test cases (resp. verification scenarios) and re-
quirements can be achieved, which links abstract testing much
more closely to the requirements and facilitates construction
and maintenance of abstract test cases.

Our abstract test cases cover all possible program executions
that are linked to a requirement. By using a bounded model
checker, all these program traces can be checked at once,
by which we achieve a much higher coverage than with
(traditional) test cases (see also Fig. 1 for a comparison).

To evaluate our method, we have conducted a case study
together with Robert Bosch GmbH on a software product from
the realm of automotive driver assistance systems. We will
report on this case study and its results in Section III of this
article.

II. ABSTRACT TESTING

Before defining the notion of abstract testing, let us briefly
review how testing of requirements on the source-code level
is typically accomplished today:

A. Traditional Testing

To derive a traditional test case from a system requirement,
the following steps have to be taken1:

1) Locate the source code that is relevant for the require-
ment either manually or by using e.g. traceability links.
We assume—for simplicity of presentation—that the
code under test is either already contained in a single

1We mainly have black-box unit testing of functional properties in mind
when talking about a test case.



function f(x1, . . . , xn), it can be inlined into a single
function2, or a simple wrapper function can be written
as part of the abstract test case that wraps the code under
test into a single function.

2) Set up and initialize (auxiliary) data structures that
function f requires to operate correctly (i.e. build the
environment).

3) Fix input parameters for function f to some sensible
values as specified in the requirement.

4) Determine what makes a correct result of function f for
the given input parameters and the given environment,
based on the information given in the requirement.

Thus, a typical test case may look as follows (in a C-like
programming language):

traditional_test() {
initialize_environment();
x1 = input value 1;
...
xn = input value n;
y = f(x1,...,xn);
if(!correct_result(x1,...,xn,y))

test_failed();
}

Initializing the environment can include tasks such as setting
up dynamic data structures (e.g. linked lists), initializing global
variables, setting up data base connections, among others.

Typically, not only one tuple of input values (x1, . . . , xn)
has to be checked for one requirement, but many of them.

Thus, one requirement translates to a whole set of test cases.
Test cases can be selected in such a way that “typical cases”
are covered or, more elaborately, to fulfill a coverage criterion
like, e.g., MCDC (modified condition decision coverage).

Another established method used for achieving a good ratio
between the number of found bugs and the number of test
cases needed is equivalence partitioning. Input (or output)
variables are split into equivalence classes (e.g. too low, valid,
too high for numerical input variables) and for each class a
single test case is created to represent that class, assuming
that all elements of a class behave similarly. Given more than
a single input or output variable it is necessary to create a test
case for every possible combination of equivalence classes if
good code coverage is to be achieved. But this means the
number of test cases grows exponentially.

B. Abstract Testing

Abstract testing, on the contrary, can often get by with
only one abstract test case per requirement. These cases are
often formulated similarly to equivalence classes, e.g. they
describe ranges of correct or incorrect input, but in contrast
to equivalence partitioning, with abstract testing the burden of
covering all combinations of equivalence classes for all other
variables is simply passed on to the software bounded model
checker.

In abstract testing, test cases (also called verification sce-
narios) are formulated in an assume/assert style on the source

2Inlining is done by software bounded model checking tools automatically
as part of the preprocessing of the code.

code level. Assume statements encode preconditions that have
to hold before the function under test is called, assert state-
ments fix postconditions that have to be valid after the function
under test has been executed.

Because these assert and assume statements closely resem-
ble calls to the assert() function most c programmers are
accustomed to there is no need to learn a new language or
syntax. At the same time the preconditions and postconditions
closely resemble the constraints used to express equivalence
classes, so a tester who is accustomed to this equivalence
partitioning will quickly be able to apply abstract testing.

Using pre- and postconditions instead of fixed values can
be applied at two levels:

1) Environment construction: Instead of setting up variables
in the environment to fixed values, constraints can be
used. Thus, e.g., the elements of a linked list may be left
completely unconstrained (i.e., all possible values are
allowed and considered during verification), if only the
list structure is of relevance for the test case. Restrictions
on environment variables are also possible, e.g., by
assuming that a time variable t always has to lie in the
range 0 ≤ t ≤ tmax.

2) Selection of input variables: Instead of selecting con-
crete values for input variables, constraints can be ap-
plied on them. So it can be specified, for example, that
8 ≤ x1 < 16.

Setting up constraints for certain variables can also be seen
as introducing a form of non-determinism: the value of a
variable is non-deterministically set to any value that respects
the constraint. Thus, when using a constraint in an abstract
test case, this can be regarded as using an “oracle” to guess
values that lead to constraint violations. When running a model
checker, we can check the postcondition for all possible values
that satisfy the precondition constraints. With this in mind, an
abstract test case then has the following shape:

abstract_test() {
nondeterministically_initialize_environment();
assume(precondition(x1));
...
assume(precondition(xn));
y = f(x1,...,xn);
assert(postcondition(x1,...,xn,y));

}

The code to non-deterministically set up the environment,
as well as the pre- and postcondition has to be provided by the
test engineer. In environment construction, he may use further
assume statements in order to obtain an abstract initialization
procedure. The assume(precondition(x)) statements
can be regarded as non-deterministically selecting values for
the input variables, thus such a line could also have been
written as

x1 = nondeterministically choose input value 1.

Such an abstract test case—which is, due to its simple,
programming-language-like syntactical constructs, also close
to the formalism a test engineer is already familiar with—can



be passed directly to a software model checker like CBMC
[7] or Java Path Finder [32].

Although an abstract test case looks almost like a traditional
test case, keep in mind that it covers a possibly large number
of concrete test cases (we will see in the case study below
to which extent a reduction in the number of test cases is
possible). Thus, by using abstract test cases, test generation
and maintenance can be greatly simplified.

C. Bounded Software Model Checking

In our case study we have used the bounded model checker
CBMC, so let us briefly review the technique of bounded
model checking. Bounded model checking (BMC) is a method
that was introduced by Biere et al. [3] to check properties of
hardware designs, but has later been extended to also allow
verification of C programs [7]. In BMC, non-determinism can
be introduced by assume statements (which put constraints
on program variables), by directly expressing that a variable
can take any value (nondet statements), or by using unini-
tialized variables (e.g. function parameters). Bounded model
checking then generates all possible program execution traces
(with bit-precision on the data level). If a correctness condition
(formulated by means of an assert statement) does not hold,
the bounded model checker will report this, and also provide a
counterexample trace on which this error occurs. BMC cannot
handle unlimited recursion, and restricts loop executions to a
fixed bound (by unwinding loops up to this bound). If the
bound is high enough to capture the system semantics, BMC
is sound and complete. If the bound is too low a warning about
the possible unsoundness is provided. In practice, at least in
our setting of low-level software, this limitation turned out to
be not essential. An implementation of BMC for C programs
is CBMC [7].

Bounded model checking has already been applied success-
fully for medium to large scale software projects, e.g. for
checking the correctness of Linux kernel modules [27].

Notice that CBMC does not support checking properties
formulated in temporal logic (like, e.g., eventually something
good happens). For our application this turned out to be not
a limiting factor, as all requirements referred to particular
program states and could therefore be expressed in a pre-
/postcondition form. This closely resembles how traditional
unit test cases are formulated.

Summarizing, abstract testing is an alternative to traditional
software testing, which uses automatic software verification
tools (bounded model checkers) to check whole bunches
of test cases all at once, such that typically a one-to-one
correspondence between requirements and abstract test cases
can be achieved.

III. CASE STUDY: AUTOMOTIVE SOFTWARE

The real benefit of Abstract Testing could only be assessed
through practical application. For this reason we carried out
a case study to compare Abstract Testing with traditional
methods of software testing as applied in an industrial software
development project. This was done in the department for

(a) Software testing – Few, se-
lected cases are checked for cor-
rectness; sound, but not complete.

?

?

?

(b) Abstraction based verifica-
tion techniques – Complete, but
may cause false positives and
therefore is not sound.

?

(c) Bounded Model Checking
(BMC) – Sound, but only ex-
ecution paths up to a specified
length are checked; therefore not
complete.

(d) BMC with large enough
bound – If the bound is chosen
high enough, the method is sound
and complete.

Fig. 1. Comparing the execution path coverage between different verification
methods.



Chassis Systems Control of the Robert Bosch GmbH in
Leonberg, Germany.

The case study was realized in the context of a software
development project for the Adaptive Cruise Control system
(ACC). Over a time frame of six month, the development
of the system was accompanied by a student. In parallel
to the software testing done by the Bosch engineers, the
student attempted abstract testing of the same source code
and requirements. Afterwards effectiveness of the methods was
compared as well as the complexity of applying each of the
competing methods.

A. Background: Driver Assistance Software

Just like a common cruise control system, an adaptive
cruise control system tries to maintain the vehicle’s speed
as previously chosen by the driver. In addition to this, an
adaptive cruise control system uses sensors, in our case a long
range radar, to monitor the vehicles environment and adapt
the driving speed accordingly. For example if there is a truck
in front of the vehicle in the same lane, then the vehicle’s
speed is reduced to match the speed of the truck. As soon as
the truck leaves the lane, the ACC system accelerates to the
previously chosen speed. This is also illustrated in Fig. 2. This
functionality makes ACC itself a driver comfort system, as it
is only meant to increase comfort for the driver, not increase
safety.

On top of ACC, Robert Bosch GmbH also develops the
Predictive Safety System (PSS), which is not a driver comfort
system, but a safety system. The PSS system is available in
multiple expansion stages, ranging from a passive safety sys-
tem to a system which is able to issue an emergency braking
autonomously if a collision with an obstacle is unavoidable.

Both of these systems can be seen as a good representative
of typical embedded code in the automotive industry. The
code is low-level and written in C/C++, parts of it are safety-
critical, strict processes and coding guidelines are applied
during the development of the code and the code is thoroughly
checked for correctness. Because of these reasons the code was
considered a prime subject for the application of Bounded
Model Checking and therefore also for an evaluation of
Abstract Testing with a case study.

B. The ACC code base

The software developed for the ACC system consists of
several software components which together make up approx-
imately hundred thousand lines of C code. Most of the code is
not safety critical, but some of it is very much so. Accordingly,
the development process requires extensive testing of these
safety critical components. This made those parts of the code
especially interesting for an evaluation of the applicability of
software verification of safety critical, embedded C source
code in general. The safety-critical software components con-
sist of several hundred lines of code, and are well-separated to
avoid interference with non-safety critical code. This, together

with the fact that the MISRA-C 3 rules ensure bounded run-
time, made the source code very well suited for software
bounded model checking with the bounded model checker
CBMC.

C. Requirements

Before Abstract Testing of the software could be attempted,
all functional requirements needed to be identified and ex-
tracted from the requirements management tool. For some
requirements additional design artifacts were necessary for a
later formalization, because the requirements alone did not
provide all necessary information. These design artifacts could
be extracted from the software documentation system used in
the project.

Not all of the requirements were functional in nature.
Some referred only to the development process, others to the
environment in which the code is executed. Out of a total of 73
requirements, 62 were functional requirements and therefore
considered suitable for Abstract Testing.

Initially, not all requirements were present. A considerable
number was added only during the case study. It was decided
to follow the changes in requirements, instead of staying with
the first version of the specification documents, as we were
interested in how Abstract Testing could handle dynamically
changing specification documents.

Each one of the 62 requirements was further analyzed to
determine how these requirements could be formalized into
abstract test cases. This showed that all of the chosen require-
ments were of a simple precondition/postcondition form. They
describe a partial program state prior to execution of the code
and the expected changes in program state after execution of
the code. This also means that no temporal logic was necessary
for formalization of the requirements and all requirements
could therefore be verified using CBMC.

The absense of requirements, which make temporal logic
neccessary, is interesting, but can be explained easily. The
system, as a real time system, highly depends on precise timing
and immediate, correct results. Properties such as “eventually
something good happens” is not good enough for such a
system. Something good has to happen immediately, before
a possibly dangerous situation occurs, not at some unspecified
time in the future.

A typical requirement from the specification documents can
be seen in Example 3.1.

Example 3.1 (Sample Requirement): If the video sensor is
not working, the predictive safety system shall not act.

To create an abstract test case from this requirement it is also
necessary to include further design artifacts linking conditions
in requirements to the variables in C code, which represent
these conditions. These can be seen in Examples 3.2 and 3.3,
which make reference to two C variables, VIDEO_SENSOR
and VETO.

3MISRA-C is a software development standard developed by the The
Motor Industry Software Reliability Association (MISRA) containing rules
and guidelines for the development of safe, portable and reliably source code
for embedded systems in the automotive industry.[24]



mph

(a) The road is free, ACC is accelerating to a driver-set speed.

mph

(b) Another vehicle is blocking the road, ACC is keeping a safe distance.

Fig. 2. The Adaptive Cruise Control System (ACC).

Example 3.2 (First Design Artifact): The variable VIDE-
O_SENSOR is set to one if and only if the video sensor is
not working.

Example 3.3 (Second Design Artifact): The driver assis-
tance system acts if and only if VETO is set to false.

The information provided by the requirement and the design
artifacts is sufficient to create an abstract test case for this
particular requirement.

In our case study, abstract, high-level requirements were
already broken down into short and concise code-level re-
quirements. These code-level requirements typically consisted
of only one or two sentences to describe the desired behavior.
The most complex requirement referred to a design document
which contained approximately two pages of mathematical
formulas needed for calculating a braking distance.

Otherwise, all requirements were kept simple so that the
code could be kept simple, too. This was done because of the
high safety criticality of this particular code.

An initial assessment of all requirements showed that all of
them could easily be formalized for verification.

D. Abstract Test Cases / Verification Scenarios

Because of the concise structure of most requirements, they
could be almost directly translated into abstract test cases.
For example the requirement shown in Example 3.1 could be
translated to an abstract test case as follows:4

Example 3.4 (Sample Abstract Test Case):

main() {
havoc();
assume(VIDEO_SENSOR != 1);
...
component_task();
...

4The havoc() procedure call in the example sets some global variables
to undefined (non-deterministic) values.

assert(VETO == true);
}

For the (non-functional) requirements that were removed
from the specification document before they could be formal-
ized, no abstract testing was attempted. Equally, those require-
ments that were only added to the specification documents
shortly before the case study was finished were not formalized
either. Thus, only a total of 43 abstract test cases were created
based on the requirements.

Almost all requirements could be turned into a single,
concise abstract test case. For those few, where two or more
abstract test cases were needed, it would have been easily
possible to adapt the requirements so that a one-to-one rela-
tionship could have been established. This clearly shows that
there is a much closer link between requirements and abstract
test cases than between requirements and traditional test cases,
as illustrated in figure 3. It also facilitates the creation of
abstract test cases as well as their maintenance, especially
when test cases have to be adapted to changes applied to the
specification.

For most test cases, the complexity did not exceed the
complexity of the sample abstract test case in Example 3.4.
Only those requirements that described more complex func-

Requirements
Artifacts

Test Cases

Scenarios /
Abstract

Test Cases

Requirements
Artifacts

R2

R1

R2

T1

T2

T3

T3
T2

T1

T4
T3

T1

T4

R1

Fig. 3. Linking requirements and Abstract Test Cases.



tional properties, for example the calculation of checksums
or braking distances, resulted in more complex abstract test
cases, but even those did not exceed 100 lines of code.

E. Results

Traditionally, the worst-case exponential runtime of verifica-
tion algorithms based on model checking is one of the largest
obstacles hindering the industrial application of these tools.
In the context of our case study, this turned out not to be a
problem at all. Runtime for the bounded model checker CBMC
on a single abstract test case was almost always below 60
seconds, and on average even less than 20 seconds. These short
runtimes make it possible to use bounded model checking in
an agile-like development process, where verification is done
early and errors in the code can be detected as soon as the
code is passed from the developer to the verification engineer.

A combined approach employing both verification using
abstract test cases and traditional software testing uncovered
a total of eleven bugs in the code. Out of these, ten bugs were
found by verification and nine bugs were found by software
testing. The one bug not found by verification was not found
due to an error in one of the abstract test cases. Out of the
two bugs not found using software testing, one could have
been found by the software tests easily, but was not because
a necessary test case for this was accidentally omitted. The
second bug was not found because it occurs only under very
special circumstances. It was located in the error handling
code paths of one component at a very specific point and
the faulty behavior would only show up if a third condition is
also met. The probability that this bug could have been found
by software testing were estimated to be very low by the test
engineer.

Especially this last error clearly shows that software veri-
fication can be more powerful than software testing, and that
it can actually be used to detect otherwise missed bugs in the
source code.

The fact that both methods missed one bug due to errors in
applying the methods shows that the proposed use of software
verification is comparable to software testing concerning error-
proneness.

The case study also shows that Abstract Testing compared
favorably to traditional software testing concerning its effec-
tiveness in finding bugs in the source code. Equally interesting
is how both methods compare concerning the cost of creating
and maintaining test cases:

This cost can be estimated by the average cost per test case
multiplied by the number of test cases. While it took several
hundred test cases for software testing5, an order of magnitude
fewer abstract test cases were necessary for complete coverage
of all chosen requirements. This became especially obvious
when a rather small change in the code caused a large increase
in the number of test cases, while only one additional abstract
test case was needed.

5Due to a non-disclosure agreement we cannot publish the precise number
of test cases created during software testing.

We estimate the cost of each individual abstract test case
to be of roughly the same order as the cost of a test case in
traditional software testing. On the one hand, traditional test
cases assign a concrete value to each input variable, such that
the program’s behavior is easier to understand. On the other
hand, a traditional test case can contain a large amount of input
variable assignments which is only relevant to ensure complete
coverage of the code (for example by coverage metrics such
as path coverage, condition coverage etc.). Abstract test cases
on the other hand only contain the relevant information for
the requirement in question.

While the case study has shows that, at least in our case,
Abstract Testing is comparable, if not superior, to traditional
software testing in its effectiveness, the study unfortunately
does not provide any hard data on the cost of creating and
maintaining abstract test cases. Still, our observations suggest
that abstract testing are a promising alternative to traditional
software test for reducing the cost of the tests.

IV. RELATED WORK

The areas of research related to our proposal are: software
verification case studies, formal requirements analysis, work
about linking testing and requirements, and model based
testing.

It has been demonstrated in many case studies that nu-
merous verification techniques can be applied to real world
software. Well known examples include the Microsoft SLAM
project [28], which led to an interface specification verification
tool that is currently deployed with every driver development
kit. Cook et al. present the Terminator [8] tool, which is
able to check certain termination properties of windows de-
vice drivers. Other examples include abstract interpretation
tools, which are successfully applied in avionics industry [9].
CBMC [7] has been successfully applied to numerous complex
software systems [21], [27].

Formal requirements analysis deals with formalizations of
requirements in an early design phase. Noticeable demonstra-
tions of this technique are given by Dutertre and Stavridou [13]
in the area of avionics using non-automatic theorem provers.
Crow and Di Vito [12] present a summary of four case studies
in space craft industry using non-automatic proof systems.
An automata based approach that is more closely related to
the model checking technique we presented was proposed by
Heitmeyer et al. [17]. Miller et al. have conducted a case
study on using both the model checker NuSMV and PVS for
checking requirements of a flight guidance system [23]. In
contrast to our work, they did not link the verification to a
concrete implementation, however. Also related to our work
is that of Staats and Heimdahl [29], where they use CBMC
to prove correctness of C code generated by automatic code
generators like Simulink.

Chechik and Gannon [6] presented a technique for automat-
ically checking the consistency of requirements and designs
(expressed as state machines with event-driven transitions),
which resembles our general approach. However, they use
light-weight verification techniques which use abstraction on



data flow and are thus less precise than the non-abstracting
model checker CBMC that we use.

Uusitalo et al. analyze best practices for linking require-
ments and testing in industry [30]. Graham argues that testers
should be integrated into early development phases [15]: Both
sides can profit from a tight linking.

Bringmann and Krämer [4] have conducted a case study
in the automotive industry applying model-based testing tech-
niques in this industry. For this, they create an abstract model
of the code under test and derive concrete test cases from
this model. Fraser and Wotawa [14], too, apply model-based
testing, and argue that usefulness of test cases should not be
measured in terms of code coverage, but rather in property
relevance. Their method uses model checking for generating
concrete test cases satisfying this coverage criterion.

Our approach is also related to the design by contract
approach, as implemented, e.g. in Eiffel. Meyer summarizes
verification-oriented aspects of Eiffel in Eiffel as a framework
for verification [22]:

Eiffels contracts have so far been applied mostly
to dynamic checks, because the benefits are so
clear and immediate. With improvements in proof
technology—including semantic modeling, theo-
rem provers, abstract interpretation and model
checking—it becomes attractive to support proofs,
as has already been the plan behind Eiffel.

Our work can be considered as a realization of this idea of
generating proofs (using a bounded model checker), although
based on C (and CBMC’s assume/assert formalism) instead of
Eiffel.

Arnold et al. ([1], [2]) developed a framework for the
specification and execution of testable requirements models.
Whereas the general approach is in parts similar to ours, he
does not employ verification methods as we do (by employing
a bounded model checker). Our abstract test cases cover a
possibly very large set of program executions, and a passed
abstract test confirms that the checked requirement holds for
all corresponding execution traces.

As a representative example of the many articles that are
dealing with applications of formal methods in an industrial
setting, we want to mention the report of Wassyng and
Lawford [33] that evaluates different tools for safety-critical
software development in the Canadian nuclear industry. An
article by Heitmeyer et al. [16] on how to obtain certifiably
secure software systems is another typical representative, more
related to security properties.

V. CONCLUSION

In this paper we presented a novel approach to software
testing called Abstract Testing. The approach is strongly
focused on a close connection between requirements and the
corresponding abstract test cases. This decreases the cost of
creating test cases and also the maintenance burden for the
test engineers considerably, as changes in requirements can
be mapped to changes in abstract test cases with little effort.

Abstract Testing has been tried in a case study in a software
development project in the automotive industry. The results
of the case study show that Abstract Testing can be applied
successfully for quality assurance of safety critical embedded
software. Abstract Testing turned out to be comparable in
effectiveness, if not superior, to traditional software testing.
The number of abstract test cases was considerably smaller
than in traditional testing, and the complexity of test cases
could be reduced to a minimum. All of this made supporting
the test cases easier and more efficient than with traditional
testing. The method scaled well, even though automatic soft-
ware verification (model checking) techniques were applied,
which traditionally suffer from an exponential blow-up in their
state space, and therefore also in their worst-case runtime.

Future work may include extending our formalism to also
handle non-functional requirements like run-time behavior,
memory consumption, or operation on restricted resources.
We believe that, in principle, such properties are also within
the reach of Abstract Testing, e.g., by modelling run-time
explicitly and using appropriate constraints.

REFERENCES

[1] D. Arnold, “An open framework for the specification and execution
of a testable requirements model,” Ph.D. dissertation, Ottawa-Carleton
Institute for Computer Science, Carleton University, 2009.

[2] D. Arnold, J.-P. Corriveau, and W. Shi, “Modeling and validating
requirements using executable contracts and scenarios,” in Proc. of the
8th Intl. Conf. on Software Engineering Research, Management and
Applications (SERA), 2010.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in 5th Intl. Conf. on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), Proc. London,
UK: Springer, 1999, pp. 193–207.

[4] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in ICST, 2008, pp. 485–493.

[5] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular veri-
fication of software components in C,” in 25th Intl. Conf. on Software
Engineering (ICSE), Proc. IEEE Computer Society, 2003, pp. 385–395.

[6] M. Chechik and J. D. Gannon, “Automatic analysis of consistency
between requirements and designs,” IEEE Trans. Software Eng., vol. 27,
no. 7, pp. 651–672, 2001.

[7] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, K. Jensen and A. Podelski, Eds., vol.
2988. Springer, 2004, pp. 168–176.

[8] B. Cook, A. Podelski, and A. Rybalchenko, “Terminator: Beyond safety,”
in CAV, ser. LNCS, T. Ball and R. B. Jones, Eds., vol. 4144. Springer,
2006, pp. 415–418.

[9] P. Cousot, “Proving the absence of run-time errors in safety-critical
avionics code,” in Proc. of the 7th ACM & IEEE Intl. Conf. on Embedded
software (EMSOFT). New York, NY, USA: ACM, 2007, pp. 7–9.

[10] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. of the Fourth ACM Symp. on Principles of
Programming Languages (POPL), Los Angeles, California, January,
1977, 1977, pp. 238–252.

[11] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The ASTREÉ analyzer,” in Programming Languages and
Systems, 14th European Symp. on Programming (ESOP),Edinburgh, UK,
April 4-8, 2005, Proc., 2005, pp. 21–30.

[12] J. Crow and B. Di Vito, “Formalizing space shuttle software require-
ments: four case studies,” ACM Trans. Softw. Eng. Methodol., vol. 7,
no. 3, pp. 296–332, 1998.

[13] B. Dutertre and V. Stavridou, “Formal requirements analysis of an
avionics control system,” IEEE Transactions on Software Engineering,
vol. 23, pp. 267–278, 1997.



[14] G. Fraser and F. Wotawa, “Property relevant software testing with model-
checkers,” SIGSOFT Softw. Eng. Notes, vol. 31, no. 6, pp. 1–10, 2006.

[15] D. Graham, “Requirements and testing: seven missing-link myths,”
Software, IEEE, vol. 19, no. 5, pp. 15–17, Sep/Oct 2002.

[16] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean, “Applying
formal methods to a certifiably secure software system,” IEEE Trans.
Software Eng., vol. 34, no. 1, pp. 82–98, 2008.

[17] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated consis-
tency checking of requirements specifications,” ACM Trans. Softw. Eng.
Methodol., vol. 5, no. 3, pp. 231–261, 1996.

[18] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software verifica-
tion with BLAST,” in 10th Int. SPIN Workshop, Proc., ser. LNCS, vol.
2648. Springer, 2003, pp. 235–239.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with blast,” in Proc. 10th Intl. Workshop on Model Checking
of Software (SPIN), ser. LNCS, no. 2648. Springer-Verlag, 2003, pp.
235–239.

[20] J. J. Hunt, E. Jenn, S. Leriche, P. Schmitt, I. Tonin, and C. Wonnemann,
“A case study of specification and verification using JML in an avionics
application,” in The 4th Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES), Proc. ACM Press, 2006, pp. 107–116.

[21] M. Kim, Y. Kim, and H. Kim, “Unit testing of flash memory device
driver through a SAT-based model checker,” in Int. Conf. on Automated
Software Engineering (ASE), Proc. IEEE Computer Society Press,
September 2008, pp. 198—207.

[22] B. Meyer, “Eiffel as a framework for verification,” in First IFIP TC
2/WG 2.3 Conference on Verified Software: Theories, Tools, Experiments
(VSSTE’05), 2005, pp. 301–307.

[23] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E. Heimdahl,
“Proving the shalls: Early validation of requirements through formal
methods,” J. Software Tools for Technology Transfer (STTT), vol. 8, no.

4-5, pp. 303–319, 2006.
[24] MISRA C Working Group, MISRA-C:2004 - Guidelines for the use

of the C language in critical systems. The Motor Industry Software
Reliability Association, 2004. [Online]. Available: http://www.misra-
c2.com/

[25] National Institute of Standards and Technology, “The economic impacts
of inadequate infrastructure for software testing,” Final report, May
2002.

[26] PolySpace Technologies, “Polyspace Client / Server for C/C++, Version
4.1.1.6 , 2008, http://www.polyspace.com.” 2008.

[27] H. Post and W. Küchlin, “Integration of static analysis for linux device
driver verification,” in Integrated Formal Methods (IFM), 6th Intl. Conf.,
Proc., ser. LNCS, J. Davies and J. Gibbons, Eds., vol. 4591. Springer-
Verlag, 2007, pp. 518–537.

[28] “Microsoft Research. The SLAM Project,” http://research.micro-
soft.com/slam, 2006.

[29] M. Staats and M. P. E. Heimdahl, “Partial translation verification for
untrusted code-generators,” in 10th Intl. Conf. on Formal Engineering
MethodsFormal (ICFEM’08), Kitakyushu-City, Japan, Oct. 2008, pp.
226–237.

[30] E. J. Uusitalo, M. Komssi, M. Kauppinen, and A. M. Davis, “Linking
requirements and testing in practice,” in RE ’08: Proceedings of the
2008 16th IEEE International Requirements Engineering Conference.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 265–270.

[31] “Verisoft - Formal verification of computer systems,”
http://www.microsoft.com/emic/verisoft.mspx, 2006.

[32] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–232,
2003.

[33] A. Wassyng and M. Lawford, “Software tools for safety-critical software
development,” STTT, vol. 8, no. 4-5, pp. 337–354, 2006.


