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ABSTRACT 
   

Assertion checking is a widely used technique to discover inconsistencies between 
specified behavior and actual implementation behavior.  A modular, static analysis 
approach that is suitable for component-based systems is introduced.  In the first stage of 
this approach, using only specifications of reused components and internal assertions in 
the implementation code (e.g., loop invariants), assertions for verification of correctness 
are generated.  In the second stage, error hypotheses are generated as Boolean formulae—
an idea inspired by results on scope restriction from the model checking community.  The 
generated formulae are such that a satisfiable assignment not only indicates an error but 
provides a directly human-readable trace of a witness to the bug.  An example checked 
using an existing SAT solver suggests that the approach is promising from the practical 
standpoint. 
 
Keywords: Components, contracts, model checking, SAT solvers, specification, 
verification. 
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1. INTRODUCTION  

In assertive software development, mathematical assertions are provided as formal 
documentation to supplement code.  Assertion checking refers to the general idea of 
checking that the specified behavior and the actual implementation behavior are 
consistent.  The benefits of writing assertions and using them to detect errors in software 
are widely known [7][21].   

Assertion checking is especially useful in component-based software development to 
detect contractual violations involving interactions among collaborating components 
[1][2][6][15].  Interface violations occur either because a client component does not 
satisfy the requirements of the called component, or because the called component does 
not satisfy its reciprocal obligations to the client.  Internal violations occur when a 
component fails to meet its own internal assertions.  Such violations result, for example, 
because an object-based implementation does not adhere to the specified representation 
invariant or because the code for a loop fails to satisfy its specified loop invariant. 

Interface-related and internal assertions can be checked statically or dynamically. Static 
assertion checking does not involve execution of code, whereas dynamic assertion 
checking does.  There is considerable previous research on both possibilities. We review 
only the most closely related research here. 

ESC Java facilitates static analysis of Java programs using assertions [4].  Jackson, et al., 
describe a general static analysis system for detecting errors using relational 
specifications [11].  The ultimate goal of static analysis is formal verification, i.e., to 
show that an implementation is correct with respect to its specification.  However, the 
focus of the current paper is (like those above) on bug detection using static analysis.   

Eiffel is among earliest systems to popularize runtime assertion checking [15].  iContract, 
a contract-checking tool for Java programs, has similar objectives [5].  Using an 
executable industrial-strength specification language, AsmL, Barnett, et al. [1] describe a 
system for dynamic checking.  Cheon and Leavens have used JML (Java Modeling 
Language) for writing assertions and for runtime assertion checking of component-based 
Java programs [1].  The benefit of contract checking in commercial development of a 
component-based C++ software system is described in [10].  Use of wrappers to separate 
contract-checking code from underlying components is described in [6]. 

The benefits of static and dynamic analysis approaches are complementary.  By not 
requiring code execution, static analysis makes it possible to test classes of software 
where execution is expensive, or where it involves rolling back non-trivial aspects of a 
larger system in which a component is embedded.  It may be possible to check statically 
some subsets of inputs, even faster than by running the program.  Dynamic checking also 
has some benefits.  For example, it allows the possibility of incorporating error-recovery 
code in deployed components, in case errors do arise.   

The contribution of this paper is a modular, static analysis approach to detecting errors in 
component-based software systems.  The approach builds on previous work on modular 
verification, results in model checking, and SAT solvers.  The paper contains a detailed 
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example and presents steps for automation.  It represents work in progress, raising as 
many questions as it answers, and hence is something that should be discussed further at a 
workshop.  

Section 2 of the paper summarizes the basics of modular reasoning.   Section 3 presents 
an example.  Using the example, Section 4 illustrates the central steps of the approach.  
Section 5 discusses some preliminary observations. 

 

2. SPECIFICATION-BASED ANALYSIS 

The essential role of specifications to enable modular reasoning in component-based 
systems is well known [23].  Well-designed specifications provide abstraction and 
separate the essential from the inessential. They serve as firewalls, and avoid expensive 
implementation-to-implementation coupling.  They are implementation-neutral allowing 
the specified behavior to be implemented in different ways.  

 

<<i mplements>><<implements>>

< <uses> > <<uses>>

<< uses> >

<<List _Template>>

<<Copying_Realiz>> < <Effic ient_Realiz> >

<<Client_Code>>

 
Figure 1: A Design-Time Relationship Diagram 

The central role of specifications for this work is illustrated in Figure 1.  In a component-
based setting, it often becomes necessary to develop and utilize multiple implementations 
of a single specification (for different component uses even within the same program), 
because there is usually no one “best” implementation for a specification. The design-
time relationship diagram in Figure 1 shows concisely and simultaneously both the 
relationships among component specifications and implementations, and the potentially 
very large number of particular component-based systems that could be built using these 
components [23]. The diagram emphasizes the role of substitutability.   Client_Code 
needs to choose an implementation of List_Template—a choice that affects its 
performance, but not its functionality. 

The idea of implementation substitutability leads us to modular reasoning or 
specification-based reasoning: the ability to reason about a component’s behavior without 
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knowing anything beyond its specification, and the specifications of the components 
reused in implementing it.  This means that a client should be able to reason about a 
component without any knowledge of its implementation details.  An implementer of a 
component cannot assume any knowledge of the client environment either, other than 
those documented explicitly in the component specification.  Achieving the modular 
reasoning property is a central issue in component-based software engineering.  It makes 
it possible to localize understanding, reasoning, and maintenance of systems. 

A modular approach to error detection relies only on specifications of reused components.  
Unlike the situation with execution-based approaches, behaviors of actual 
implementations do not impact the results of error detection.   

3. A COMPONENT-BASED EXAMPLE 

3.1 An Example Component Specification 

This section contains an example.  Figure 2 shows a skeleton of a specification of a 
bounded version of a parameterized List_Template in a dialect of RESOLVE notation 
[18].  Here, the value space of a List object (with position) is modeled mathematically as 
a pair of strings of entries: those to the “left” and those to the “right” of an imaginary 
“fence” that separates them.  Conceptualizing a List object with a position makes it easy 
to explain insertion and removal at the fence.  A sample value of a List of Integers object, 
for example, is the ordered pair (<3, 4, 5>, <4 ,1>).  Insertions and removals can be 
explained as taking place between the two strings, e.g., at the left end of the right string 
(i.e., just to the right of the fence), as we have done here.   

Formally, the declaration of type List introduces the mathematical model and, using an 
example List, it states that both the left and right strings of a List are initially empty.   A 
requires clause serves as an obligation for a caller, whereas an ensures clause is a 
guarantee from a correct implementation.  In the ensures clause of Insert, for example, #P 
and #E denote the incoming values of P and E, respectively, and P and E denote the out-
going values.    In the specification, the infix operator * denotes string concatenation and 
the outfix operator | | denotes string length. 

An interesting aspect of the Insert specification is that its behavior is relational.   The 
semantics of “alters” mode is that the result value of the entry E is undetermined.  This 
under-specification allows implementations not to have to make expensive copies of non-
trivial entries, which is an important issue in the specification of generic data abstractions 
[9].  Copying references, while efficient, introduces aliasing and complicates reasoning 
[22].  The present specification is more flexible.  It allows the entry to be moved or 
swapped into the container structure (efficiently in constant time by manipulating 
references) and thus potentially alter it, without introducing aliasing [9].  
Correspondingly, the Remove operation is specified to remove an entry from the P and 
replace the parameter R.  Operation Advance allows the list insertion position (fence) to 
be moved ahead.  The rest of the specification is discussed in detail in [19]. 
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Concept List_Template( type Entry ); 
 uses Std_Integer_Fac, String_Theory; 
 
 Type List is modeled by ( 
   Left: Str(Entry); 
   Right: Str(Entry) 
  ); 
  exemplar P; 
  initialization ensures  
   |P.Left| = 0 and |P.Right| = 0; 
 
  Operation Insert( alters E: Entry;  
             updates P: List ); 
   ensures P.Left = #P.Left and  
      P.Right = 〈#E〉 * #P.Right; 
 
  Operation Remove( replaces R: Entry;  
                 updates P: List ); 
   requires |P.Right| > 0; 
   ensures P.Left = #P.Left and  
      #P.Right = 〈R〉 * P.Right; 
 
  Operation Advance ( updates P: List ); 
   requires |P.Right| > 0; 
   ensures P.Left * P.Right = 
        #P.Left * #P.Right  and 
       |P.Left| = |#P.Left| + 1; 
 
  Operation Right_Length  
     ( restores P: List ): Integer; 
   ensures Right_Length = |P.Right|; 
 
  Operation Reset ( updates P: List ); 
   ensures |P.Left| = 0 and  
      P.Right = #P.Left * #P.Right; 
  . . . 
end List_Template; 
 

Figure 2: A Specification of List_Template 

3.2 Specification and Implementation of an Example Operation 

Figure 3 contains the specification of an operation to reverse (the right string of) a list.  In 
the specification, Rev denotes the mathematical definition of string reversal. 

Figure 4 contains an (incorrect) recursive procedure to implement the specification.  This 
realization is written using the primary List operations given in Figure 2.  To demonstrate 
termination, the recursive procedure is annotated with a progress metric using the 
decreasing keyword. 
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4. MODULAR STATIC ANALYSIS  

4.1. Step 1 – Reasoning Table Generation 

As a first step in modular static analysis—either to prove correctness or to find errors—
we first generate a symbolic reasoning table [19].  Figure 5 contains a table for the code 
in Figure 4, which is similar to the one given in [19].  A key observation for the current 
paper is that this table can be produced mechanically from the information in Figures 2, 3, 
and 4, as explained in [19] and summarized below.   

Enhancement Reversal_Capability for List_Template; 
 Operation Reverse( updates P: List ); 
  requires |P.Left| = 0; 
  ensures P.Left = Rev(#P.Right) and 
     |P.Right| = 0; 

end Reversal_Capability;  
 

Figure 3: Specification of a List Reversal Operation 

 

Realization Recursive_Realiz for 
  Reversal_Capability; 
 Recursive Procedure Reverse 
        ( updates P: List ); 
  decreasing |P.Right|; 
  var E: Entry; 
  if ( Right_Length(P) > 0 ) then 
   Remove(E, P); 
   Reverse(P); 
   Insert(E, P); 
  end; 
 end Reverse; 

end Recursive_Realiz;  
 

Figure 4: An Implementation of List Reversal Operation 

In the table, each program state is numbered.  For each state, the Assume column lists 
verification assumptions and the Confirm column lists the assertions to be proved to 
demonstrate correctness.  The path condition denotes under what condition a given state 
will be reached.   

A variable name is extended with the name of the state to denote the value of the variable 
in that state.  P1, for example, denotes the value of variable P in state 1.  To prove that 
the procedure for Reverse is correct, we assume that its precondition is true in the initial 
state and must confirm that its postcondition is true in the final state.  For modular 
verification, we rely only on the behavioral contracts of the reused operations (i.e., Insert 
and Remove).  In particular, for correct calling code we must be able to confirm that the 
requires clause of a reused operation is true in the state before the call; then we can 
assume that the ensures clause is true in the state after the call.  The recursive call to 
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Reverse is treated just like any other call.  However, before the recursive call, we 
additionally need to confirm that the progress metric decreases. 

 

State Path 
Condition 

Assume Confirm 

0  |P0.Left| = 0  

 if ( Right_Length(P) > 0 ) then 

1 |P0.Right| > 0 P1 = P0 |P1.Right| > 0 

     Remove(E, P); 

2 |P0.Right| > 0 P2.Left =  P1.Left ∧  

P1.Right = <E2> * 

    P2.Right  

|P2.Left| = 0 ∧  

|P2.Right| < |P0.Right| 

     Reverse(P); 

3 |P0.Right| > 0 E3 = E2 ∧  

P3.Left = 
Rev(P2.Right) ∧  

|P3.Right| = 0  

 

     Insert(E, P); 

4 |P0.Right| > 0 P4.Left = P3.Left ∧  

P4.Right = <E3> * 

    P3.Right 

 

 end; 

5.1 |P0.Right| = 0 P5 = P0 P5.Left = Rev(P0.Right) ∧  

|P5.Right| = 0 

5.2 |P0.Right| > 0 P5 = P4 P5.Left = Rev(P0.Right) ∧  

|P5.Right| = 0 

 

Figure 5: A Reasoning Table for List Reverse Procedure 

The path condition in a given state serves as an antecedent for the assertions that can be 
assumed and that must be confirmed in that state.  In other words, the assumptions apply 
only when the path condition holds.  Similarly, the obligations need to be confirmed only 
when the path condition holds. 

4.2. Step 2 – Error Hypothesis Generation 

To prove the correctness of the code, then, we need to confirm each obligation in the last 
column, using the assumptions in the states before and including the state where the 
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obligation arises.  Before attempting the non-trivial process of verification using a general 
theorem-proving tool, it is useful to look for errors. 

In the current approach, we look for a witness to a bug in the code.  In particular, we 
attempt to find values for the variables that satisfy all relevant assumptions but that fail to 
satisfy something that needs to be confirmed.  We do this by conjoining the assumptions 
and the negation of the assertion to be confirmed, and seek a satisfying assignment for the 
variables in this error hypothesis—a witness to a bug. 

To illustrate the idea, consider one of the assertions that needs to be confirmed in state 5 
(arising from the postcondition of Reverse).  In particular, consider the recursive case 
when the path condition |P0.Right| > 0 holds.  We wish to find a set of assignments to the 
variables that satisfies the assertion in Figure 6.  This would show that the code is 
defective.  In the figure, the conjunct numbered I is the path condition, conjuncts II 
through VII are assumptions in states 0 through 5, and conjunct VIII is the negation of the 
assertion to be confirmed in state 5. 

Error hypothesis generation is automatable.  There are four error hypotheses for the 
present example, one each corresponding to the confirm clauses in states 1 and 2, and two 
for state 5 (one for the base case 5.1 and one for the recursive case 5.2).   If a satisfying 
assignment exists for an error hypothesis arising from an intermediate state (e.g., state 1 
or 2 here), then the code fails to live up to its part of the contract to an operation it calls.  
It is also possible that the error hypothesis arising from the final state at the end of the 
code (in state 5 in the table) cannot be satisfied, although intermediate errors are found.  
In this case, the code is still deemed wrong because of the modularity property discussed 
in Section 2.  

(|P0.Right| > 0) ∧     I 
(|P0.Left| = 0) ∧      II 
(P1 = P0) ∧      III 
(P2.Left = P1.Left ∧  P1.Right = <E2> * P2.Right) ∧    IV 
(E3 = E2 ∧  P3.Left = Rev(P2.Right) ∧  |P3.Right| = 0) ∧   V 
(P4.Left = P3.Left ∧  P4.Right = <E3> * P3.Right) ∧    VI 
(P5 = P4) ∧     VII 
(¬  (P5.Left = Rev(P0.Right) ∧  |P5.Right| = 0))    VIII 
 

Figure 6: Error Hypothesis Corresponding to the Obligation (Case 5.2) in State 5 
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4.3. Step 3 – Scope Restriction and Boolean Formula Generation 

In the search for a witness to an error hypothesis, we appeal to Jackson’s small scope 
hypothesis (where “scope” is, loosely speaking, a measure of the size of the input space to 
be searched).  It claims that even though, for any given scope, one can construct a 
program with a bug whose detection requires a strictly larger scope, in practice, many 
bugs will be detectable in small scopes [11].  Restriction of scope allows us to check all 
the valid inputs in a given scope to find a witness to an error hypothesis.  If one is found, 
then we can conclude that the code is not consistent with the assertions.  If none is found 
in the given scope, then we only know that there are no inconsistencies in the scope; 
inconsistencies may be found if the scope is increased. 

We restrict the scopes of participating variables instead of placing bounds on individual 
objects, recursive calls, and loops.  We begin with the most stringent restrictions.  In the 
example, we start by looking for a witness to the error hypothesis in which all variables of 
type Entry have one particular value, and in which strings of type Entry are either empty 
or contain just a single Entry with that value.   Without loss of generality, we call the 
single value of type Entry Z0.   This in turn restricts the scope of our search for strings to 
be the two-element set {Str_Empty, Str_Z0}, where Str_Empty denotes the empty string 
and Str_Z0 denotes the string <Z0>. 

With these restrictions on scope, we can create a (possibly large, but finite) Boolean 
formula to correspond to each error hypothesis generated from the code and the 
specifications, e.g., the one in Figure 6.  Each satisfying assignment for this Boolean 
formula identifies a particular witness to a particular error hypothesis.  To condense space 
usage, we have shown only a part of the formula in Figure 7.   

In the conjuncts listed in Figure 7, the names of all Boolean variables can be generated 
automatically (although they are sanitized here to be somewhat “meaningful” for human 
reading).  The Boolean variable P0_Left_equals_Str_Empty being true, for example, 
denotes that the left string of the list P in state 0 is equal to the empty string.  In addition 
to the variables that correspond directly to the symbols in Figure 6, variable names 
corresponding to mathematical expressions involving string length, reverse, and 
concatenation are needed as well.  Given this, the first two conjuncts in Figure 7 
correspond directly to those in Figure 6. 

To assert that P1 = P0 (conjunct III in Figure 6), the Boolean formula has to assert that 
the left strings of the two lists are equal and that the right strings are equal.  However, 
each string may have only one of two values because of scope restriction: Str_Empty or 
Str_Z0.  The left strings of P0 and P1 will be equal if they are both Str_Empty or if they 
are both Str_Z0.  This observation leads to conjuncts in III in Figure 7.  The rest of the 
conjunctions IV through VIII in Figure 7 are derived similarly. 

A list of additional conjunctions needs to be generated to complete the Boolean formula 
generation; only some of these additional conjunctions are shown in Figure 7.   For 
example, we need to assert that the right string of a list cannot be both empty and contain 
a single entry (although it could be longer), i.e.: 

(¬  P0_Right_equals_Str_Empty ∨  ¬  P0_Right_equals_Str_Z0)  
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The formula needs to make this assertion for the left and right strings of a list in each 
state.  One set of assertions is generated based on the mathematical definition of string 
length, e.g.: 

(Len_P0_Right_equals_Zero ⇔ P0_Right_equals_Str_Empty) 

Other sets of assertions are generated for string reversal and concatenation within the 
restricted scope. Notice that similar conjuncts for, e.g., reversal of the left string of a list, 
are not generated because they do not arise in the conjuncts corresponding to the 
assertions in Figure 6.  The complete formula is given in the Appendix. 

 

I 
 (¬Len_P0_Right_equals_Zero)  
 
II 
( Len_P0_Left_equals_Zero)  
 
III 
((P1_Left_equals_Str_Empty ∧  P0_Left_equals_Str_Empty) 
    ∨  (P1_Left_equals_Str_Z0 ∧  P0_Left_equals_Str_Z0)) ∧  
((P1_Right_equals_Str_Empty ∧  P0_Right_equals_Str_Empty) 
    ∨  (P1_Right_equals_Str_Z0 ∧  P0_Right_equals_Str_Z0))  
 
IV 
((P2_Left_equals_Str_Empty ∧  P1_Left_equals_Str_Empty) 
    ∨  (P2_Left_equals_Str_Z0 ∧  P1_Left_equals_Str_Z0)) ∧  
((P1_Right_equals_Str_Empty ∧  
      Cat_E2_P2_Right_equals_Str_Empty) 
    ∨  (P1_Right_equals_Str_Z0 ∧  
           Cat_E2_P2_Right_equals_Str_Z0))  
 
V 
(E3_equals_Z0 ∧  E2_equals_Z0) ∧   
((P3_Left_equals_Str_Empty ∧  
        Rev_P2_Right_equals_Str_Empty) 
    ∨  (P3_Left_equals_Str_Z0 ∧  
            Rev_P2_Right_equals_Str_Z0)) ∧  
(Len_P3_Right_equals_Zero)  
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VI 
((P4_Left_equals_Str_Empty ∧  P3_Left_equals_Str_Empty) 
    ∨  (P4_Left_equals_Str_Z0 ∧  P3_Left_equals_Str_Z0)) ∧  
((P4_Right_equals_Str_Empty ∧  
      Cat_E3_P3_Right_equals_Str_Empty) 
    ∨  (P4_Right_equals_Str_Z0 ∧  
            Cat_E3_P3_Right_equals_Str_Z0))  
 
VII 
((P5_Left_equals_Str_Empty ∧  P4_Left_equals_Str_Empty) 
    ∨  (P5_Left_equals_Str_Z0 ∧  P4_Left_equals_Str_Z0)) ∧  
((P5_Right_equals_Str_Empty ∧  
      P4_Right_equals_Str_Empty) 
    ∨  (P5_Right_equals_Str_Z0 ∧  P4_Right_equals_Str_Z0))  
 
VIII 
 (¬  ((( P5_Left_equals_Str_Empty ∧   
             Rev_P0_Right_equals_Str_Empty) ∨   
           (P5_Left_equals_Str_Z0 ∧   
             Rev_P0_Right_equals_Str_Z0)) ∧  
         (Len_P5_Right_equals_Zero)))  
 
Additional Assertions: 
 
Unique Values (sample: P0.Right) 
(¬  P0_Right_equals_Str_Empty ∨  ¬  P0_Right_equals_Str_Z0)  
 
String Length (sample: |P0.Right|) 
(Len_P0_Right_equals_Zero ⇔ P0_Right_equals_Str_Empty)  
 
String Reverse (sample: Rev(P0.Right)) 
(Rev_P0_Right_equals_Str_Empty ⇔   
      P0_Right_equals_Str_Empty) ∧  
(Rev_P0_Right_equals_Str_Z0 ⇔ P0_Right_equals_Str_Z0)  
 
String Concatenate (sample: <E2> * P2.Right) 
(¬  Cat_E2_P2_Right_equals_Str_Empty) ∧  
(Cat_E2_P2_Right_equals_Str_Z0 ⇔ 
    (E2_equals_Z0 ∧  P2_Right_equals_Str_Empty)) 
 

Figure 7: Selected Conjuncts Corresponding to Figure 6  

The number of Boolean variables in the entire formula is bounded by the product of the 
size of the restricted scope, the number of program variables and mathematical 
expressions in the original verification conditions, and the number of states in the 
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implementation.  The number of conjuncts depends on the sizes of the mathematical 
assertions involved and the number of generated Boolean variables.  

 

4.4. Step 4 – Use of a SAT Solver  

The example illustrates that the formulae generated during this process are not in 
conjunctive normal form (CNF).  While it is possible to convert the formula into CNF, 
the result is a formula that is much longer and that does not correspond to the code 
directly.   We therefore applied a SAT checker that can handle arbitrary propositional 
formulae [12]. This solver overcomes the CNF limitation of other state-of-the-art SAT 
checkers such as BerkMin [8] or Chaff [16].  The solver uses a Davis-Putnam-style [3] 
algorithm to compute satisfying assignments, and can handle formulae involving several 
thousand variables. While the current solver is fast, we expect parallel implementations to 
allow further improvements [17].  Thus, the solver is potentially suitable for handling 
assertions resulting from non-trivial specifications and implementations. 

When the formula in Figure 7 was supplied to the SAT solver, it produced the assignment 
given in Figure 8 within a fraction of a second.  In addition, the solver concluded that this 
is the only solution.   

Len_P0_Left_equals_Zero 
P0_Left_equals_Str_Empty 
P0_Right_equals_Str_Z0 
Rev_P0_Right_equals_Str_Z0 
P1_Left_equals_Str_Empty 
P1_Right_equals_Str_Z0 
P2_Left_equals_Str_Empty 
E2_equals_Z0 
P2_Right_equals_Str_Empty  
Cat_E2_P2_Right_equals_Str_Z0 
Rev_P2_Right_equals_Str_Empty 
P3_Left_equals_Str_Empty 
E3_equals_Z0 
P3_Right_equals_Str_Empty  
Cat_E3_P3_Right_equals_Str_Z0 
Len_P3_Right_equals_Zero 
P4_Left_equals_Str_Empty 
P4_Right_equals_Str_Z0 
P5_Left_equals_Str_Empty 
P5_Right_equals_Str_Z0 
 

Figure 8: Only Solution to the Formula in Figure 7 

The solution essentially gives the value of each variable in each state.  Here, the 
following variables are true in the witness: P0_Left_equals_Str_Empty, 
P0_Right_equals_Str_Z0, P5_Left_equals_Str_Empty, and P5_Right_equals_Str_Z0.  
This corresponds to a List input value of P = (< >, <Z0>) and an output value of P = (< >, 
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<Z0>).  The code is erroneous because the output value as required by the specification is 
P = (<Z0>, < >).   A problem with the code is identified here with a severaly restricted 
scope because the lengths of the left and right strings resulting from the code and 
specification do not match.   (If no assignments were found, the scopes would be enlarged 
and the process repeated.) 

A key benefit of the modular error detection approach is that it is relatively easy to debug 
the code from the given solution.  Based on the finding in Figure 8, a reader can infer how 
to fix the code. 

 

5.  DISCUSSION  

5.1. Generality of the Approach 

While we have illustrated details of the approach using a simple recursive procedure in 
this paper, the potential significance of the approach is its generality.  Elsewhere, we have 
discussed handling a proof system for verification of data abstractions (including those 
where abstraction relations are necessary) [20] and verification of both time and space 
constraints [14], even in the presence of dynamic memory management and loops.  With 
the proof rules in those papers, a reasoning table similar to the one in Figure 5 can be 
generated for functionality and performance verification, and then the process of finding 
errors described in this paper can be applied to check the assertions.  

It is important to note that the complexity and the capability of this error checking method 
depend on the assertions that are specified.  A user of the system may choose to specify 
simplified assertions (e.g., a specification of the Insert operation that merely states that 
the length of a list is incremented by one), in which case simplified formulae will be 
generated with less error-catching potential but possibly faster analysis. 

 

5.2. Benefits of Static Analysis 

One benefit of static analysis is in checking performance constraints, which is difficult to 
do using execution-based approaches (though members of the research group are 
exploring that possibility as well).  In addition, the modularity of the approach offers 
other advantages as well.  For example, suppose that there are two implementations of 
List_Template, as shown in Figure 1: one in which Insert copies E (leaving E = #E) and 
one based on swapping, where #E and E may be unrelated.   Now consider the assertive 
client code in Figure 9 that is intended to retrieve the “next” entry of a list.  In the figure, 
P is of type List and Next is of type Entry.  For the code to work, it must copy Next before 
it is inserted back on the list.   
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Assume P = <α,β> and |β| ≠ 0; 
 Remove (Next, P); 
 Insert (Next, P); 
Confirm (∃γ : Str(Entry) ∋  β = <Next> * γ) and P = <α,β>; 
 

Figure 9: Error in “Get Next” Code That Goes Undetected in Runtime Assertion 
Checking 

Based on the specification of Insert alone, we cannot confirm the assertion at the end, 
because the value of Next may be arbitrary.  However, this error will not be revealed in 
runtime assertion checking or testing, if the copying implementation of List_Template is 
used.  It does not matter how many test points are employed, because the client code 
(inadvertently or intentionally) is relying on the unspecified behavior of this particular 
implementation.  In typical dynamic analysis, the error will be revealed only if different 
implementations of underlying components are substituted.  Alternatively, the error is 
likely to be detected in a runtime verification approach that includes a non-deterministic 
choice construct [1].   Execution of that construct might lead to any one (of a finite) set of 
alternatives for E after Insert, and hence, the assertion to be confirmed at the end of the 
code in Figure 9 will fail. 

This kind of problem is quite common in component-based software, and has nothing at 
all to do with the particular example.  The merits of relational specification, and in 
general, under-specification, are well documented, for example in [13] and more recently 
in [11][18].  Optimization problems often have relational specifications to allow any of 
several “tied” answers to be produced.  Under-specification need not always occur in 
ensures clauses.  For example, the requires clause of a call to another operation following 
the code in Figure 9 might be satisfied in runtime checking, if Next indeed happens to be 
the front entry of β, but not otherwise.  Finally, weaker internal assertions such as 
representation invariants and loop invariants, that are insufficient to prove correctness of 
data abstractions, will go undetected if the corresponding code does more than what is 
documented in those assertions.   

 

5.3. Summary 

The ultimate objective of formal verification techniques is to prove that a piece of code is 
correct with respect to its specification.  Before attempting to prove correctness, however, 
it might be cost-effective to check for errors.  We have described a modular, static 
analysis approach for discovering some such errors.   

Some aspects of the approach have been automated at the time of submission, and some 
others are work in progress.      While we have already identified a suitable SAT solver 
that can handle the types of formulae resulting from our mechanization, currently we are 
developing a too that can generate Boolean formulae given assertions from a reasoning 
table.       
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Appendix: A Complete Boolean Formula Corresponding to Figure 6 

 
(not Len_P0_Right_equals_Zero) and 
( Len_P0_Left_equals_Zero) and 
((P1_Left_equals_Str_Empty and P0_Left_equals_Str_Empty) 
or (P1_Left_equals_Str_Z0 and P0_Left_equals_Str_Z0)) and 
((P1_Right_equals_Str_Empty and P0_Right_equals_Str_Empty) 
or (P1_Right_equals_Str_Z0 and P0_Right_equals_Str_Z0)) and 
((P2_Left_equals_Str_Empty and P1_Left_equals_Str_Empty) 
or (P2_Left_equals_Str_Z0 and P1_Left_equals_Str_Z0)) and 
((P1_Right_equals_Str_Empty and 
Cat_E2_P2_Right_equals_Str_Empty) 
or (P1_Right_equals_Str_Z0 and 
Cat_E2_P2_Right_equals_Str_Z0)) and 
(E3_equals_Z0 and E2_equals_Z0) and  
((P3_Left_equals_Str_Empty and 
Rev_P2_Right_equals_Str_Empty) 
or (P3_Left_equals_Str_Z0 and 
Rev_P2_Right_equals_Str_Z0)) and 
(Len_P3_Right_equals_Zero) and 
((P4_Left_equals_Str_Empty and P3_Left_equals_Str_Empty) 
or (P4_Left_equals_Str_Z0 and P3_Left_equals_Str_Z0)) and 
((P4_Right_equals_Str_Empty and 
Cat_E3_P3_Right_equals_Str_Empty) 
or (P4_Right_equals_Str_Z0 and 
Cat_E3_P3_Right_equals_Str_Z0)) and 
((P5_Left_equals_Str_Empty and P4_Left_equals_Str_Empty) 
or (P5_Left_equals_Str_Z0 and P4_Left_equals_Str_Z0)) and 
((P5_Right_equals_Str_Empty and 
P4_Right_equals_Str_Empty) 
or (P5_Right_equals_Str_Z0 and P4_Right_equals_Str_Z0)) and 
(not ((( P5_Left_equals_Str_Empty and 
Rev_P0_Right_equals_Str_Empty) or 
(P5_Left_equals_Str_Z0 and  
Rev_P0_Right_equals_Str_Z0)) and 
(Len_P5_Right_equals_Zero))) and 

 
(not P0_Left_equals_Str_Empty or not P0_Left_equals_Str_Z0) and 
(not P1_Left_equals_Str_Empty or not P1_Left_equals_Str_Z0) and 
(not P2_Left_equals_Str_Empty or not P2_Left_equals_Str_Z0) and 
(not P3_Left_equals_Str_Empty or not P3_Left_equals_Str_Z0) and 
(not P4_Left_equals_Str_Empty or not P4_Left_equals_Str_Z0) and 
(not P5_Left_equals_Str_Empty or not P5_Left_equals_Str_Z0) and 
(not P0_Right_equals_Str_Empty or not P0_Right_equals_Str_Z0) and 
(not P1_Right_equals_Str_Empty or not P1_Right_equals_Str_Z0) and 
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(not P2_Right_equals_Str_Empty or not P2_Right_equals_Str_Z0) and 
(not P3_Right_equals_Str_Empty or not P3_Right_equals_Str_Z0) and 
(not P4_Right_equals_Str_Empty or not P4_Right_equals_Str_Z0) and 
(not P5_Right_equals_Str_Empty or not P5_Right_equals_Str_Z0) and 
(Len_P0_Left_equals_Zero iff P0_Left_equals_Str_Empty) and 
(Len_P0_Right_equals_Zero iff P0_Right_equals_Str_Empty) and 
(Len_P3_Right_equals_Zero iff P3_Right_equals_Str_Empty) and 
(Len_P5_Right_equals_Zero iff P5_Right_equals_Str_Empty) and 
(Rev_P0_Right_equals_Str_Empty iff  
P0_Right_equals_Str_Empty) and 
(Rev_P0_Right_equals_Str_Z0 iff P0_Right_equals_Str_Z0) and 
(Rev_P2_Right_equals_Str_Empty iff  
P2_Right_equals_Str_Empty) and 
(Rev_P2_Right_equals_Str_Z0 iff P2_Right_equals_Str_Z0) and 
(not Cat_E2_P2_Right_equals_Str_Empty) and 
(Cat_E2_P2_Right_equals_Str_Z0 iff 
(E2_equals_Z0 and P2_Right_equals_Str_Empty)) and 
(not Cat_E3_P3_Right_equals_Str_Empty) and 
(Cat_E3_P3_Right_equals_Str_Z0 iff 
(E3_equals_Z0 and P3_Right_equals_Str_Empty)) 

 


