
Verifying the On-Line Help System of SIEMENS Magnetic
Resonance Tomographs using SAT

(Extended Abstract)

Carsten Sinz and Wolfgang Küchlin

Symbolic Computation Group, WSI for Computer Science, University of Tübingen and
Steinbeis Technology Transfer Center OIT, 72076 Tübingen, Germany

http://www-sr.informatik.uni-tuebingen.de

Abstract. Large-scale medical systems—like magnetic resonance tomographs—are manufactured with
a steadily growing number of product options. Different model lines can be equipped with large num-
bers of supplementary equipment options like (gradient) coils, amplifiers, magnets or imaging devices.
The diversity in service and maintenance procedures, which may be different for each of the many prod-
uct instances, grows accordingly. Therefore, instead of having one common on-line service handbook
for all medical devices, SIEMENS fragments the on-line documentation into small (help) packages, out
of which a suitable subset is selected for each individual product instance. Selection of the packages is
controlled by XML documents, but the conditions can be translated into Boolean Boolean formulae. To
check whether the existing set of help packages is sufficient for all possible devices and service cases,
we developed theHelpCheckertool.HelpCheckeruses both SAT- and BDD-based methods to check the
consistency and completeness of the on-line documentation and to generate small (counter-)examples
for cases where verification conditions are violated.

1 Introduction

There is a persistent trend towards products that are individually adaptable to each customer’s needs (mass
customization[1]). This trend, while offering considerable advantages for the customer, at the same time
demands special efforts by the manufacturer, as he now must make arrangements to cope with myriads of
different product instances. Questions arising in this respect include: How can such a large set of product
variants be represented and maintained concisely and uniquely? How can the parts that are required to
manufacture a given product instance be determined? Is a certain requested product variant manufacturable
at all? And, last but not least, how can the documentation—both for internal purposes and for the customer—
be prepared adequately?

Triggered, among other reasons, by an increased product complexity, SIEMENS Medical Solutions
recently introduced a formal description for their magnetic resonance tomographs (MR) based on XML.
Thus, not only individual product instances, but also the set of all possible (valid, correct) product configu-
rations can now be described by an XML term. This formalproduct documentationallows for an automatic
checking of incoming customer orders for compliance with the product specification. Besides checking an
individual customer order for correctness, further tests are possible. These may include cross-checks be-
tween the set of valid product instances and the parts list (in order to find superfluous parts) or other product
attributes (e.g., the product’s help documentation).

In this paper we show how a formal semantics can be assigned to the SIEMENS XML representation of
their MR systems. This is an indispensable precondition for applying automatic theorem proving methods
like SAT-checking. We further show how to translate different consistency properties of the on-line help
system (help package overlaps, missing help packages) into propositional formulae. Thus we are able to
apply SAT-checkers to find defects in the package assignment of the on-line help system. Situations in
which such a defect occurs are computed and simplified using BDD-based abstraction techniques.

2 Product Documentation using XML

Product Structure. Many different formalisms have been proposed in the literature to model the structure
of complex products [2–6]. The method used by SIEMENS for the configuration of their MR systems
resembles the approach presented by Soininenet al. [4]. Structural information is explicitly represented as

a tree. This tree serves two purposes: first, it reflects the hierarchical assembly of the device, i.e. it shows
the constituent components of larger (sub-)assemblies; and, second, it gathers all available, functionally
equivalent configuration possibilities for a certain functionality. These two distinct purposes are reflected
by two different kinds of nodes in the tree, as can be seen from the example in Fig. 1.Type Nodesare

Rx4 = X2

Type

Main

System

MPCU Receiver Rx4 Table SAR

300
Mhz

R-2

R-4

X1

X2

Open IEC

MHW

Type Node

Item Node

Constraint Satellite

ConcertoHarmony

Fig. 1.Product Structure of Magnetic Resonance Tomograps (Simplified Example).

employed to reflect the hierarchical structure, whereasItem Nodesmirror possible configuration options
with common functionality. From the example tree shown in Fig. 1 we may, e.g., conclude that there are two
different possibilities for choosing aSystemfrom: HarmonyandConcerto. A Harmonysystem possesses
three configurable (direct) subcomponents, of typeMPCU, Receiver, andRx4, respectively. The receiver, in
turn, may be selected from the two alternativesR-2andR-4. Choosing the latter option puts an additional
restriction on the configurable componentRx4: this has to be selected in its formX2. Each type node
possesses additional attributesMinOccursandMaxOccursto bound the number of subitems of that type to
admissible values.

Within the SIEMENS system, the tree describing all product configurations is represented as an XML
term. XML terms are checked for well-formedness using XML Schemas.

Structure of On-Line Help. The on-line help pages that are presented to the service personnel of an MR
system may depend on the configuration of the system. For example, help pages should only be offered for
components that are in fact present in the system configuration. Moreover, for certain service procedures
(e.g. tune up, quality assurance), the pages depend not only on the system configuration at hand, but also
on the (workflow) steps that the service personnel already has executed. Thus, the help system is both
configuration and workflow state dependent.

To avoid writing the complete on-line help from scratch for each possible system configuration and all
possible workflow states, the whole help system is broken down into smallHelp Packages. A help package
contains documents (texts, pictures, demonstration videos) on a specialized topic. The authors of the help
packages decide autonomously about how to break down the whole help into smaller packages. So it is their
own decision whether to write a whole bunch of smaller packages—one for each system configuration—
or to integrate similar packages into one. Therefore, a list ofdependenciesmust be attached to each help
package, in which the author lists the system configurations and workflow states for which his package is
suitable.

The situations for which a help package must be available are specified by the engineering depart-
ment using so-calledHelp Contexts. A help context determines system parameters and workflow steps for
which a help package must be present. Currently, almost a thousand help contexts are defined for eleven
MR systems, each with millions of different configuration possibilities. So, in spite of in-depth product
knowledge, it is a difficult and time consuming task for the authors of help packages to find gaps (missing

packages) or overlaps (ambiguities in package assignment) in the help system. To assist the authors, we
therefore developed theHelpCheckertool, which is able to perform cross-checks between the set of valid
system configurations, the situations for which help may be requested (determined by the contexts) and the
situations for which help packages are available (determined by the packages’ dependencies).

3 Logical Translation of Product Structure and Help System

To check the completeness and consistency of the on-line help system we need a translation into a logical
formalism. We have chosen propositional logic for this purpose because of its relative simplicity and the
presence of fast and elaborate decision procedures (SAT, BDD). We now lay down precisely what consti-
tutes a consistent help system. Of course, for each situation in which help may be requested there should be
a unique suitable help package. Therefore, we have to find out which situations and product configurations
can actually occur. In a first step, we therefore develop a formalization of the product structure by building
a configuration validity formula (ValidConf). The validity formula can automatically be derived from the
XML data of the product structure and consists of consistency criteria for each of the structure’s tree nodes.
For a type node the following three validity conditions have to hold:

T1. The number of sub-items of the node must match the number restrictions given by the MinOccurs and
MaxOccurs attributes.

T2. All selected sub-items must fulfill the validity conditions for item nodes.
T3. No sub-items may be selected that were not explicitly listed as admissible for this type.

For an item node the following three validity conditions have to hold:

I1. All sub-type nodes must fulfill the validity conditions for type nodes.
I2. The item’s constraint, if present, has to be fulfilled.
I3. Unreferenced types and their items must not be used in the configuration. Types are considered unref-

erenced, if they do not appear as a subnode of the item.

We now informally define completeness and consistency of the on-line help system.

Definition 1. The on-line help system is complete, if for each help context a matching help package exists.
Only valid system configurations have to be considered.

Definition 2. There is an overlap between two help packages (“ambiguity”), if there is a help context and
a valid system configuration for which both help packages match. The on-line help system is consistent, if
there are no overlaps between help packages.

These properties can be translated into propositional criteria to be checked. To build the link between
XML terms and propositional logic, sub-elements and attributes from the XML product and help package
description are extracted.

Besides the validity formula ValidConf, we define a further formula HelpReq and a set of formulae
HelpProv for each help package. HelpReq defines all situations, i.e. configurations and workflows, for
which a help package is required, whereas HelpProv(p) determines the situations for which packagep
provides help. Now, completeness of the help system is equivalent to the validity of the propositional logic
formula

HelpReq∧ ValidConf⇒
∨

p∈HelpPackages

HelpProv(p) . (*)

There is an overlap between help packagesp1 andp2 if and only if

HelpReq∧ ValidConf⇒ HelpProv(p1) ∧ HelpProv(p2) (**)

is satisfiable. Thus, the help system is consistent, if the latter formula is unsatisfiable for all help packages
p1 andp2 with p1 6= p2.

4 Technical Realization and Experimental Results

Our implementationHelpCheckeris a C++ program that builds on Apache’s Xerces XML parser to read the
SIEMENS product and help system descriptions. From these data, it generates Formulae (*) and (**). After
having generated these formulae, it checks their satisfiability (in case of (*), it checks satisfiability of the
negation). Prior conversion to CNF is done using the well-known technique due to Tseitin [7]. In case of an
error condition, a formula is generated describing the set of situations in which this error occurs. This for-
mula is simplified by existential abstraction over irrelevant variables using BDD techniques.HelpChecker
is embedded into a larger system for the authors of help packages at SIEMENS.

First experiments and timing measurements with theHelpCheckerwere conducted on a data set con-
taining eleven different lines of MR systems, 964 help contexts and twelve (dummy) help packages. To
check the completeness and consistency of this data set, 35 SAT instances were generated (we use a fast
approximative pre-test for package overlaps that filters out trivial cases). These SAT instances contained
1425 different propositional variables and between 11008 and 11018 clauses. Ten of them were satisfiable,
25 unsatisfiable. One satisfiable instance corresponded to a missing help package, the other nine were due
to package overlaps. To check satisfiability we used a sequential version of our parallel SAT-checker PaSAT
[8]. Unsatisfiability could always be determined by unit propagation alone, the maximal search time for a
satisfiable instance amounted to 15.90 ms (80 branches in the Davis-Putnam algorithm, search heuristics
MAX OCC).

5 Conclusion

In this paper we presented an encoding of the configuration and on-line help system of SIEMENS MR
devices in propositional logic. Consistency properties of the on-line help system are expressed as Boolean
logic formulae and checked by a SAT solver.

Although we demonstrated the feasibility of our method only for the MR systems of SIEMENS Medical
Solutions, we suppose that the presented techniques are also usable for other complex products. More gen-
erally, we expect that a wide range of cross-checks between XML documents can be computed efficiently
using SAT-solvers.

References

1. Davis, S.M.: Future Perfect. Addison-Wesley (1987)
2. Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In: Proc. of the 11th Intl. Joint Conf. on

Artificial Intelligence, Detroit, MI (1989) 1395–1401
3. Sabin, D., Weigel, R.: Product configuration frameworks – a survey. IEEE Intelligent Systems13 (1998) 42–49
4. Soininen, T., Tiihonen, J., M̈annisẗo, T., Sulonen, R.: Towards a general ontology of configuration. AI EDAM12

(1998) 357–372
5. McGuiness, D., Wright, J.: Conceptual modelling for configuration: A description logic-based approach. AI EDAM

12 (1998) 333–344
6. Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data management. J. Automated

Reasoning24 (2000) 145–163
7. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Silenko, A.O., ed.: Studies in Construc-

tive Mathematics and Mathematical Logic. (1970) 115–125
8. Sinz, C., Blochinger, W., K̈uchlin, W.: PaSAT - parallel SAT-checking with lemma exchange: Implementation and

applications. In Kautz, H., Selman, B., eds.: LICS’2001 Workshop on Theory and Applications of Satisfiability Test-
ing (SAT’2001). Volume 9 of Electronic Notes in Discrete Mathematics., Boston, MA, Elsevier Science Publishers
(2001)

