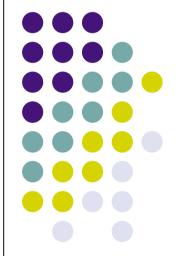
Verification of the IBM System Automation's Expert System

Carsten Sinz, Wolfgang Küchlin Symbolic Computation Group, WSI, University of Tübingen

Thomas Lumpp

zSeries System Management, IBM Germany Development Lab



Overview

- Introduction IBM System Automation for OS/390
- Presentation of the built-in Expert System
- Consistency Criteria of the Rule Set
- Verification Methodology
- Results
- Conclusion

IBM System Automation (SA)

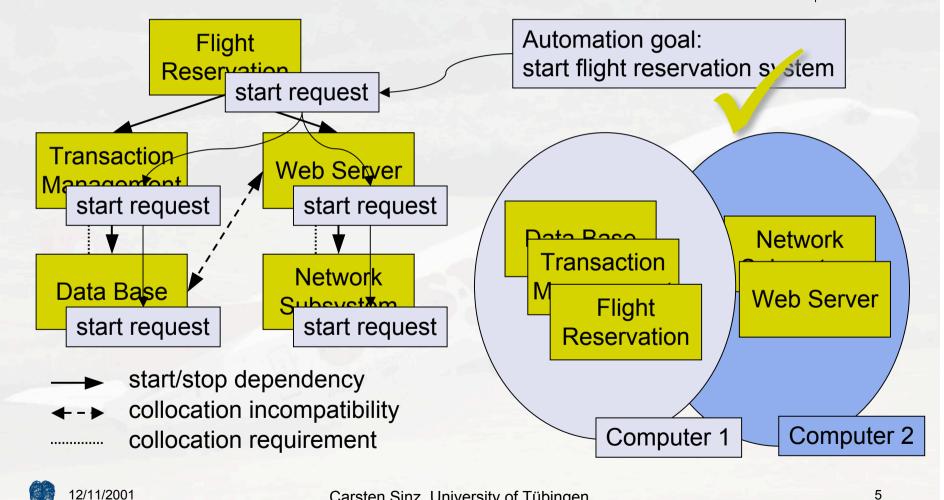
Automates operation of computer centers:

- Starting/stopping of applications (taking *dependencies* into account)
- Moving of applications between computers (e.g. on failure, for workload balancing)
- Supervision (active monitoring) of applications (current status? failure? system's workload?)
- Failure detection and error recovery

IBM System Automation (SA) (cont'd)

- Actions driven by Automation Goals, e.g.
 - start application A
 - move application B from S_1 to S_2
- Grouping allows simplified automation of complex applications.
- Plans generated and executed by Automation Manager

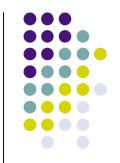
SA Example: Flight Reservation System



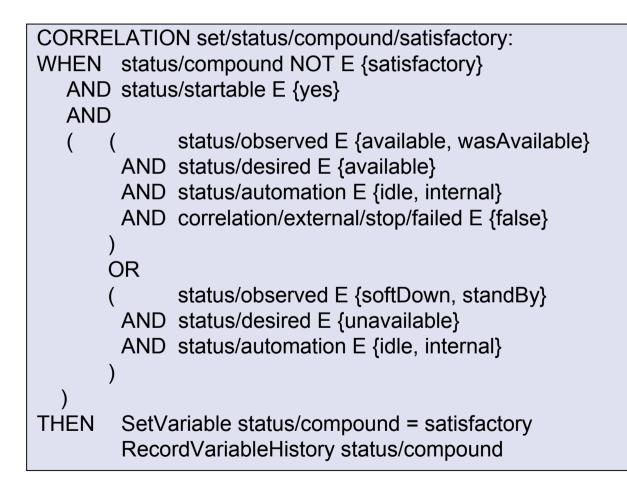
Carsten Sinz, University of Tübingen

The Expert System of SA's Automation Manager

- Contains rules for each resource (application, computer system)
- Computes status of resources, propagates start/stop requests
- Situation-action rules (WHEN-THEN) for setting variables



Expert System: Rule Example



SA's Expert System: Example

correlati when and and then	on rule1: app1/state = down app1/goal = up app1/dependencies = fulfilled app1/state = up	correlati when and then	on rule2: app1/state = up app1/IOError = true app1/state = down
	app1/goal = up app1/dependenci app1/IOError = tr rule trule app1/state = down	es ⊽nfelfi lleo ^{ue} then 1 2	on rule3: d app1/IOError = true app1/dependencies = pending te = up
12/11/20	Carsten Sinz, University of Tübingen 8		

Verification Method

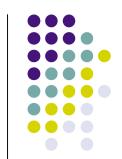
- Converting the rules to PDL (propositional dynamic logic)
- Formulating consistency properties in PDL
- Converting consistency properties to BOOL (Boolean or propositional logic)
- Running an Automatic Theorem Prover (ATP)
- Simplifying the result of the ATP

Verification Step 1: Converting Rules to PDL

PDL allows reasoning about programs α , β :

- $\alpha;\beta$ consecutive execution
- $\alpha \cup \beta$ nondeterministic choice
- α^* finite, nondeterministic repetition
- F? test for property (formula) F
- [α]*F* after all terminating executions of α *F* holds
- $\langle \alpha \rangle F$ there is a terminating program run of α after which *F* holds
- $\Delta \alpha$ the program α^* can diverge

Verification Step 1: Converting Rules to PDL (cont'd)



1. Conversion of finite domains

New propositions $P_{v,d}$ for each variable v and each possible value d of v.

- 2. Introduction of atomic programs Atomic programs $\alpha_{v,d}$ for the assignment operation v=d.
- 3. Translation of rules

when $F_{v,d}$ then $\alpha_{v,d}$ is translated to $(F_{v,d} \land \neg P_{v,d})?;\alpha_{v,d}$.

4. Translation of Single Step Program S and Automation Manager Program AM

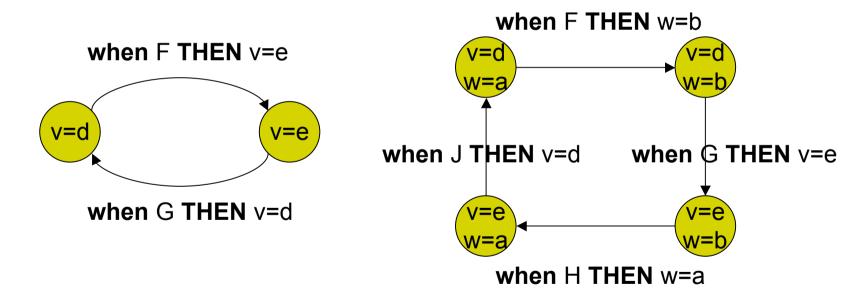
$$\mathbf{S} = \bigcup_{v,d_v} \left(F_{v,d_v} \land \neg P_{v,d_v} ?; \alpha_{v,d_v} \right) \quad \mathbf{AM} = \mathbf{S}^*; \bigwedge_{v,d_v} \left(F_{v,d_v} \Longrightarrow P_{v,d_v} \right)?$$

Verification Step 2: Consistency Properties in PDL

- Functionality (unique result of computation): $\langle AM \rangle p \Leftrightarrow [AM]p$ (for all propositions p)
- Termination:
 - $\neg \Delta S$ (Δ is the divergence operator)
- other consistency criteria, e.g. confluence

Termination / Loops

All non-terminating programs caused by *program loops*, e.g.:



Verification Step 3: Termination Property in BOOL

• Preliminary: Proper restriction $F|_{v=d}$

$$P_{w,e}\Big|_{v=d} = \begin{cases} T & \text{if } v = w, d = e \\ \bot & \text{if } v = w, d \neq e \\ P_{w,e} & \text{if } v \neq w \end{cases}$$

allows specification of properties concerning multiple program states:

Let
$$s_0 \xrightarrow{v=d} s_1$$
. Then $s_1 \models F$ iff $s_0 \models F|_{v=d}$.

Verification Step 3: Termination Property (cont'd)

Example:

- Potential 2-loop: $s_0 \xrightarrow{\nu=d_1} s_1 \xrightarrow{\nu=d_0} s_0$
- Corresponding rules: when F then v=d₁

when G then $v=d_0$

• Then validity of the formula

 $\neg (P_{v,d_0} \wedge F \wedge G|_{v=d_1})$

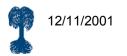
is a necessary condition for the absence of this 2-loop.

• Actual occurrance of error may depend on rule evaluation order.

Verification Step 3: Termination Property (cont'd)

- In SA ordered evaluation of variables (x<y<z<...), where x<y denotes that x is evaluated before y.
- Extended property indicating absence of 2-loops considering variable evaluation order:

$$\bigwedge_{w < v, d_w} (F_{w, d_w} \Rightarrow P_{w, d_w}) \Rightarrow \neg (P_{v, d_0} \land F \land G|_{v = d_1})$$



Verification Step 4: Automatic Theorem Prover

- Formulas generated in verification step 3 provide input for standard ATP program, e.g.
 - Davis-Putnam style prover (SAT)
 - BDDs (binary decision diagrams)
- Output is one of:
 - "no error" resp. list of counterexamples (SAT)
 - "no error" resp. formula representing all counterexamples (BDDs)

Verification Step 5: Simplification of Result

• In case of error,

$$\mathrm{EF} := \bigwedge_{w < v, d_w} (F_{w, d_w} \Longrightarrow P_{w, d_w}) \implies \neg (P_{v, d_0} \land F \land G|_{v = d_1})$$

is not valid, but formula representing counterexamples may be huge.

 Simplification: remove irrelevant variables (not contained in the 2 rules under consideration) by existential abstraction in EF:

 $\exists \vec{X}. \text{EF}$

where \vec{X} contains all irrelevant variables.

Results

- Input Formulas:
 - Computation of resource's compound status, 3 errors (rule overlap)
 - 41 rules, 74 variables, ≈1500 symbols
- SAT
 - Runtimes for proving non-looping properties: <1 sec.
 - Formulas for loop errors have relatively large number of models (270-405) representing individual error cases.

• BDD

- Generation time: 1-2 sec.
- Generated BDDs have ≈100-200 nodes.
- Simplification reduces number of error cases to 1-3.

Summary / Conclusion

- Goal:
 - Error detection in Rule-Based Expert Systems
- Method:
 - Conversion of consistency properties to SAT
 - Application of current SAT-checking technology
- Benefits:
 - Correctness assertions possess high quality
 - Compared to testing: covers all possible cases
 - Generates generalized error patterns

Thanks for your attention!

Carsten Sinz Symbolic Computation Group, WSI University of Tübingen, Germany

http://www-sr.informatik.uni-tuebingen.de

