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Overview

 Introduction IBM System Automation for
OS/390

 Presentation of the built-in Expert System
 Consistency Criteria of the Rule Set
 Verification Methodology
 Results
 Conclusion
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IBM System Automation (SA)

Automates operation of computer centers:
 Starting/stopping of applications

(taking dependencies into account)
 Moving of applications between computers

(e.g. on failure, for workload balancing)
 Supervision (active monitoring) of applications

(current status? failure? system's workload?)
 Failure detection and error recovery



12/11/2001 Carsten Sinz, University of Tübingen 4

IBM System Automation (SA)
(cont'd)

 Actions driven by Automation Goals, e.g.
 start application A
 move application B from S1 to S2

 Grouping allows simplified automation of
complex applications.

 Plans generated and executed by
Automation Manager
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The Expert System of SA's
Automation Manager

 Contains rules for each resource (application,
computer system)

 Computes status of resources, propagates
start/stop requests

 Situation-action rules (WHEN-THEN) for
setting variables
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Expert System: Rule Example
CORRELATION set/status/compound/satisfactory:
WHEN  status/compound NOT E {satisfactory}
     AND status/startable E {yes}
     AND
     (      (        status/observed E {available, wasAvailable}
            AND status/desired E {available}
             AND status/automation E {idle, internal}
             AND correlation/external/stop/failed E {false}
            )
            OR
            (        status/observed E {softDown, standBy}
            AND status/desired E {unavailable}
             AND status/automation E {idle, internal}
            )
    )
THEN  SetVariable status/compound = satisfactory
            RecordVariableHistory status/compound
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SA's Expert System: Example
correlation rule1:
when app1/state = down

and app1/goal = up
and app1/dependencies = fulfilled

then app1/state = up

correlation rule2:
when app1/state = up

and app1/IOError = true
then app1/state = down

app1/goal = up
app1/dependencies = fulfilled
app1/IOError = true

app1/state = down app1/state = up

1 2

rule1

rule2

correlation rule3:
when app1/IOError = true
then app1/dependencies = pending
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Verification Method

 Converting the rules to PDL (propositional
dynamic logic)

 Formulating consistency properties in PDL
 Converting consistency properties to BOOL

(Boolean or propositional logic)
 Running an Automatic Theorem Prover

(ATP)
 Simplifying the result of the ATP
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Verification Step 1:
Converting Rules to PDL

PDL allows reasoning about programs α,β:

α;β consecutive execution
α∪β nondeterministic choice
α* finite, nondeterministic repetition
F? test for property (formula) F
[α]F after all terminating executions of α F holds
〈α〉F there is a terminating program run of α after

which F holds
Δα the program α* can diverge
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Verification Step 1:
Converting Rules to PDL (cont'd)

1. Conversion of finite domains
New propositions Pv,d for each variable v and each possible
value d of v.

2. Introduction of atomic programs
Atomic programs αv,d for the assignment operation v=d.

3. Translation of rules
when Fv,d then αv,d  is translated to (Fv,d ∧¬ Pv,d)?;αv,d .

4. Translation of Single Step Program S and Automation
Manager Program AM
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Verification Step 2:
Consistency Properties in PDL

 Functionality (unique result of computation):
〈AM〉p ⇔ [AM]p (for all propositions p)

 Termination:
¬ΔS (Δ is the divergence operator)

 other consistency criteria, e.g. confluence
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Termination / Loops

All non-terminating programs caused by
program loops, e.g.:

v=d v=e

when F THEN v=e

when G THEN v=d

v=d
w=a

v=d
w=b

v=e
w=a

v=e
w=b

when F THEN w=b

when G THEN v=ewhen J THEN v=d

when H THEN w=a
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Verification Step 3:
Termination Property in BOOL

 Preliminary: Proper restriction F|v=d

allows specification of properties concerning
multiple program states:
Let               . Then                          .
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Verification Step 3:
Termination Property (cont'd)

Example:
 Potential 2-loop:
 Corresponding rules: when F then v=d1

                 when G then v=d0

 Then validity of the formula

is a necessary condition for the absence of this 2-loop.
 Actual occurrance of error may depend on rule

evaluation order.
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Verification Step 3:
Termination Property (cont'd)

 In SA ordered evaluation of variables
(x<y<z<…), where x<y denotes that x is
evaluated before y.

 Extended property indicating absence of 2-loops
considering variable evaluation order:
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Verification Step 4:
Automatic Theorem Prover

 Formulas generated in verification step 3
provide input for standard ATP program, e.g.
 Davis-Putnam style prover (SAT)
 BDDs (binary decision diagrams)

 Output is one of:
 “no error” resp. list of counterexamples (SAT)
 “no error” resp. formula representing all

counterexamples (BDDs)
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Verification Step 5:
Simplification of Result
 In case of error,

is not valid, but formula representing counterexamples
may be huge.

 Simplification: remove irrelevant variables (not contained
in the 2 rules under consideration) by existential
abstraction in EF:

where       contains all irrelevant variables.
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Results
 Input Formulas:

 Computation of resource’s compound status, 3 errors (rule
overlap)

 41 rules, 74 variables, ≈1500 symbols
 SAT

 Runtimes for proving non-looping properties: <1 sec.
 Formulas for loop errors have relatively large number of models

(270-405) representing individual error cases.
 BDD

 Generation time: 1-2 sec.
 Generated BDDs have ≈100-200 nodes.
 Simplification reduces number of error cases to 1-3.
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Summary / Conclusion
 Goal:

 Error detection in Rule-Based Expert Systems
 Method:

 Conversion of consistency properties to SAT
 Application of current SAT-checking technology

 Benefits:
 Correctness assertions possess high quality
 Compared to testing: covers all possible cases
 Generates generalized error patterns
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Thanks for your attention!Thanks for your attention!
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