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 Consistency Criteria of the Rule Set
 Verification Methodology
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IBM System Automation (SA)

Automates operation of computer centers:
 Starting/stopping of applications

(taking dependencies into account)
 Moving of applications between computers

(e.g. on failure, for workload balancing)
 Supervision (active monitoring) of applications

(current status? failure? system's workload?)
 Failure detection and error recovery
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IBM System Automation (SA)
(cont'd)

 Actions driven by Automation Goals, e.g.
 start application A
 move application B from S1 to S2

 Grouping allows simplified automation of
complex applications.

 Plans generated and executed by
Automation Manager
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The Expert System of SA's
Automation Manager

 Contains rules for each resource (application,
computer system)

 Computes status of resources, propagates
start/stop requests

 Situation-action rules (WHEN-THEN) for
setting variables
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Expert System: Rule Example
CORRELATION set/status/compound/satisfactory:
WHEN  status/compound NOT E {satisfactory}
     AND status/startable E {yes}
     AND
     (      (        status/observed E {available, wasAvailable}
            AND status/desired E {available}
             AND status/automation E {idle, internal}
             AND correlation/external/stop/failed E {false}
            )
            OR
            (        status/observed E {softDown, standBy}
            AND status/desired E {unavailable}
             AND status/automation E {idle, internal}
            )
    )
THEN  SetVariable status/compound = satisfactory
            RecordVariableHistory status/compound
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SA's Expert System: Example
correlation rule1:
when app1/state = down

and app1/goal = up
and app1/dependencies = fulfilled

then app1/state = up

correlation rule2:
when app1/state = up

and app1/IOError = true
then app1/state = down

app1/goal = up
app1/dependencies = fulfilled
app1/IOError = true

app1/state = down app1/state = up

1 2

rule1

rule2

correlation rule3:
when app1/IOError = true
then app1/dependencies = pending
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Verification Method

 Converting the rules to PDL (propositional
dynamic logic)

 Formulating consistency properties in PDL
 Converting consistency properties to BOOL

(Boolean or propositional logic)
 Running an Automatic Theorem Prover

(ATP)
 Simplifying the result of the ATP
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Verification Step 1:
Converting Rules to PDL

PDL allows reasoning about programs α,β:

α;β consecutive execution
α∪β nondeterministic choice
α* finite, nondeterministic repetition
F? test for property (formula) F
[α]F after all terminating executions of α F holds
〈α〉F there is a terminating program run of α after

which F holds
Δα the program α* can diverge
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Verification Step 1:
Converting Rules to PDL (cont'd)

1. Conversion of finite domains
New propositions Pv,d for each variable v and each possible
value d of v.

2. Introduction of atomic programs
Atomic programs αv,d for the assignment operation v=d.

3. Translation of rules
when Fv,d then αv,d  is translated to (Fv,d ∧¬ Pv,d)?;αv,d .

4. Translation of Single Step Program S and Automation
Manager Program AM
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Verification Step 2:
Consistency Properties in PDL

 Functionality (unique result of computation):
〈AM〉p ⇔ [AM]p (for all propositions p)

 Termination:
¬ΔS (Δ is the divergence operator)

 other consistency criteria, e.g. confluence
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Termination / Loops

All non-terminating programs caused by
program loops, e.g.:

v=d v=e

when F THEN v=e

when G THEN v=d

v=d
w=a

v=d
w=b

v=e
w=a

v=e
w=b

when F THEN w=b

when G THEN v=ewhen J THEN v=d

when H THEN w=a
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Verification Step 3:
Termination Property in BOOL

 Preliminary: Proper restriction F|v=d

allows specification of properties concerning
multiple program states:
Let               . Then                          .
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Verification Step 3:
Termination Property (cont'd)

Example:
 Potential 2-loop:
 Corresponding rules: when F then v=d1

                 when G then v=d0

 Then validity of the formula

is a necessary condition for the absence of this 2-loop.
 Actual occurrance of error may depend on rule

evaluation order.
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Verification Step 3:
Termination Property (cont'd)

 In SA ordered evaluation of variables
(x<y<z<…), where x<y denotes that x is
evaluated before y.

 Extended property indicating absence of 2-loops
considering variable evaluation order:
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Verification Step 4:
Automatic Theorem Prover

 Formulas generated in verification step 3
provide input for standard ATP program, e.g.
 Davis-Putnam style prover (SAT)
 BDDs (binary decision diagrams)

 Output is one of:
 “no error” resp. list of counterexamples (SAT)
 “no error” resp. formula representing all

counterexamples (BDDs)
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Verification Step 5:
Simplification of Result
 In case of error,

is not valid, but formula representing counterexamples
may be huge.

 Simplification: remove irrelevant variables (not contained
in the 2 rules under consideration) by existential
abstraction in EF:

where       contains all irrelevant variables.
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Results
 Input Formulas:

 Computation of resource’s compound status, 3 errors (rule
overlap)

 41 rules, 74 variables, ≈1500 symbols
 SAT

 Runtimes for proving non-looping properties: <1 sec.
 Formulas for loop errors have relatively large number of models

(270-405) representing individual error cases.
 BDD

 Generation time: 1-2 sec.
 Generated BDDs have ≈100-200 nodes.
 Simplification reduces number of error cases to 1-3.
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Summary / Conclusion
 Goal:

 Error detection in Rule-Based Expert Systems
 Method:

 Conversion of consistency properties to SAT
 Application of current SAT-checking technology

 Benefits:
 Correctness assertions possess high quality
 Compared to testing: covers all possible cases
 Generates generalized error patterns
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