Verification of the IBM
System Automation's
Expert System

Carsten Sinz, Wolfgang Kuchlin
Symbolic Computation Group, WSI, University of TUbingen

Thomas Lumpp
zSeries System Management, IBM Germany Development Lab

Overview

e |[ntroduction IBM System Automation for
0S/390

e Presentation of the built-in Expert System
e Consistency Criteria of the Rule Set

e Verification Methodology

e Results

e Conclusion

i 12/11/2001 Carsten Sinz, University of Tubingen 2

IBM System Automation (SA)

Automates operation of computer centers:

Starting/stopping of applications
(taking dependencies into account)

Moving of applications between computers
(e.g. on failure, for workload balancing)

Supervision (active monitoring) of applications
(current status? failure? system's workload?)

Failure detection and error recovery

i 12/11/2001 Carsten Sinz, University of Tubingen 3

IBM System Automation (SA) | :::
(cont'd)

e Actions driven by Automation Goals, e.q.
start application A
move application B from S, to S,

e Grouping allows simplified automation of
complex applications.

e Plans generated and executed by
Automation Manager

l;:r'f,i- 12/11/2001 Carsten Sinz, University of Tubingen 4

SA Example:
Flight Reservation System

start request

v

Data Bgse)

/

start request

f

Flight
Reserpatian
start request
A
Transaction— | \/
Manana - / 4 Web Selyer

start request

v

Network
Lheyvict X

start request

— start/stop dependency
<« -» collocation incompatibility

i 12/11/2001

collocation requirement

Automation goal:

start flight reservation s* stem

Transaction

Flight
Reservation

Network

Web Server

Computer 1

N~ |

Computer 2

Carsten Sinz, University of Tubingen

5

The Expert System of SA's 43
Automation Manager

e Contains rules for each resource (application,
computer system)

e Computes status of resources, propagates
start/stop requests

e Situation-action rules (WHEN-THEN) for
setting variables

f;:fﬁ,% 12/11/2001 Carsten Sinz, University of Tubingen 6

Expert System: Rule Example

i 12/11/2001

CORRELATION set/status/compound/satisfactory:
WHEN status/compound NOT E {satisfactory}
AND status/startable E {yes}
AND
((status/observed E {available, wasAvailable}
AND status/desired E {available}
AND status/automation E {idle, internal}
AND correlation/external/stop/failed E {false}
)
OR
(status/observed E {softDown, standBy}
AND status/desired E {unavailable}
AND status/automation E {idle, internal}
)
)
THEN SetVariable status/compound = satisfactory
RecordVariableHistory status/compound

Carsten Sinz, University of Tubingen

000
00
[X)
o
' |
SA's Expert System: Example
correlation rule1: correlation rule2:
when app1/state = down when app1/state = up
and appi/goal = up and app1/IOError = true
and app1/dependencies = fulfilled then app1/state = down
then app1/state = up
app1/goal = up correlation rule3:
app1/dependencies wHhekilled app1/I0Error = true
pp1/IOError = tfue then app1/dependencies = pending

1

app1/state = down app1/state = up

? 12/11/2001 Carsten Sinz, University of Tubingen 8

Verification Method

Converting the rules to PDL (propositional
dynamic logic)

Formulating consistency properties in PDL

Converting consistency properties to BOOL
(Boolean or propositional logic)

Running an Automatic Theorem Prover
(ATP)

Simplifying the result of the ATP

i 12/11/2001 Carsten Sinz, University of Tubingen 9

Verification Step 1: T
Converting Rules to PDL

PDL allows reasoning about programs a,f:

;P
aUp

*

0

F?
[a]F
()F

Ao,

B 12/11/2001

consecutive execution

nondeterministic choice

finite, nondeterministic repetition

test for property (formula) F

after all terminating executions of o F holds

there is a terminating program run of a after
which F holds

the program o can diverge

Carsten Sinz, University of Tubingen 10

Verification Step 1: 44
Converting Rules to PDL (cont)

1. Conversion of finite domains

New propositions P, , for each variable v and each possible
value d of v.

2. Introduction of atomic programs
Atomic programs a,, , for the assignment operation v=d.

3. Translation of rules
when F ;then o, , is translated to (F,, A— P, j%a,,.

4. Translation of Single Step Program S and Automation
Manager Program AM

S = LdJ(Fd A-P, Ta,,) AM=S"; /d\ (Fq =P,)?

4 v

l;:'f,% 12/11/2001 Carsten Sinz, University of Tlbingen "

Verification Step 2: 44
Consistency Properties in PDL

e Functionality (unique result of computation):
(AM)p < [AM]p (for all propositions p)

e Termination:
-AS (A is the divergence operator)

e other consistency criteria, e.g. confluence

i 12/11/2001 Carsten Sinz, University of Tiibingen 12

Termination / Loops

All non-terminating programs caused by
program loops, €.g.:

when F THEN w=b
when F THEN v=e =

W=
when J THEN v=d

when G THEN v=d 4

when H THEN w=a

% 12/11/2001 Carsten Sinz, University of Tiibingen 13

Verification Step 3: 44
Termination Property in BOOL

e Preliminary: Proper restriction F|,_,
(T ifv=w,d=¢e

=J1 1fv=wd=e

P ifv=w

w,e
.

allows specification of properties concerning
multiple program states:

Let s,—=L>s.. Then s |=F iff s, |- F|_,.

12/11/2001 Carsten Sinz, University of Tubingen 14

Verification Step 3: 44
Termination Property (contd)

Example:
e Potential 2-loop: 5, —L—ss5, —L >y,
e Corresponding rules: when F then v=d,
when G then v=d,
e Then validity of the formula
—-(PV,d0 AF A Gv=d1)
IS a necessary condition for the absence of this 2-loop.

e Actual occurrance of error may depend on rule
evaluation order.

i 12/11/2001 Carsten Sinz, University of Tiibingen 15

Verification Step 3: 44
Termination Property (contd)

e In SA ordered evaluation of variables
(x<y<z<...), where x<y denotes that x is
evaluated before vy.

e Extended property indicating absence of 2-loops
considering variable evaluation order:

N\ (Fw,dW:Pw,dw) d _'(Pv,do /\F’\Gv=dl)

w<v,d,,

) 12/11/2001 Carsten Sinz, University of Tiibingen 16

Verification Step 4: see
Automatic Theorem Prover

e Formulas generated in verification step 3
provide input for standard ATP program, e.q.

Davis-Putnam style prover (SAT)
BDDs (binary decision diagrams)
e Output is one of:

“no error” resp. list of counterexamples (SAT)

‘no error” resp. formula representing all
counterexamples (BDDs)

) 12/11/2001 Carsten Sinz, University of Tiibingen 17

Verification Step 5: T
Simplification of Result

e In case of error,

EF = A (Fw,dw :>Pw,dw) d _'(Pv,do NFEANG

w<v,d,,

Is not valid, but formula representing counterexamples
may be huge.

e Simplification: remove irrelevant variables (not contained
in the 2 rules under consideration) by existential
abstraction in EF:

3X EF
where Y contains all irrelevant variables.

v=d,)

i 12/11/2001 Carsten Sinz, University of Tiibingen 18

Results

e Input Formulas:

Computation of resource’s compound status, 3 errors (rule
overlap)

41 rules, 74 variables, =1500 symbols

o SAT

Runtimes for proving non-looping properties: <1 sec.

Formulas for loop errors have relatively large number of models
(270-405) representing individual error cases.

e BDD

Generation time: 1-2 sec.
Generated BDDs have =100-200 nodes.
Simplification reduces number of error cases to 1-3.

i 12/11/2001 Carsten Sinz, University of Tiibingen 19

Summary / Conclusion

e Goal:
Error detection in Rule-Based Expert Systems

e Method:

Conversion of consistency properties to SAT

Application of current SAT-checking technology
e Benefits:

Correctness assertions possess high quality

Compared to testing: covers all possible cases
Generates generalized error patterns

i 12/11/2001 Carsten Sinz, University of Tiibingen 20

Thanks for your attention!

Carsten Sinz

Symbolic Computation Group, WSI
University of Tubingen, Germany

12/11/2001 Carsten Sinz, University of Tubingen 21

