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Overview

e |[ntroduction IBM System Automation for
0S/390

e Presentation of the built-in Expert System
e Consistency Criteria of the Rule Set

e Verification Methodology

e Results

e Conclusion
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IBM System Automation (SA)

Automates operation of computer centers:

Starting/stopping of applications
(taking dependencies into account)

Moving of applications between computers
(e.g. on failure, for workload balancing)

Supervision (active monitoring) of applications
(current status? failure? system's workload?)

Failure detection and error recovery
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IBM System Automation (SA) | :::
(cont'd)

e Actions driven by Automation Goals, e.q.
start application A
move application B from S, to S,

e Grouping allows simplified automation of
complex applications.

e Plans generated and executed by
Automation Manager
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SA Example:
Flight Reservation System
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The Expert System of SA's 43
Automation Manager

e Contains rules for each resource (application,
computer system)

e Computes status of resources, propagates
start/stop requests

e Situation-action rules (WHEN-THEN) for
setting variables
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Expert System: Rule Example
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CORRELATION set/status/compound/satisfactory:
WHEN status/compound NOT E {satisfactory}
AND status/startable E {yes}
AND
(  ( status/observed E {available, wasAvailable}
AND status/desired E {available}
AND status/automation E {idle, internal}
AND correlation/external/stop/failed E {false}
)
OR
( status/observed E {softDown, standBy}
AND status/desired E {unavailable}
AND status/automation E {idle, internal}
)
)
THEN SetVariable status/compound = satisfactory
RecordVariableHistory status/compound
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SA's Expert System: Example
correlation rule1: correlation rule2:
when app1/state = down when app1/state = up
and appi/goal = up and app1/IOError = true
and app1/dependencies = fulfilled then app1/state = down
then app1/state = up
app1/goal = up correlation rule3:
app1/dependencies wHhekilled app1/I0Error = true
pp1/IOError = tfue then app1/dependencies = pending

1

app1/state = down app1/state = up
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Verification Method

Converting the rules to PDL (propositional
dynamic logic)

Formulating consistency properties in PDL

Converting consistency properties to BOOL
(Boolean or propositional logic)

Running an Automatic Theorem Prover
(ATP)

Simplifying the result of the ATP
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Verification Step 1: T
Converting Rules to PDL

PDL allows reasoning about programs a,f:
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consecutive execution

nondeterministic choice

finite, nondeterministic repetition

test for property (formula) F

after all terminating executions of o F holds

there is a terminating program run of a after
which F holds

the program o can diverge
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Verification Step 1: 44
Converting Rules to PDL (cont)

1. Conversion of finite domains

New propositions P, , for each variable v and each possible
value d of v.

2. Introduction of atomic programs
Atomic programs a,, , for the assignment operation v=d.

3. Translation of rules
when F ;then o, , is translated to (F,, A— P, j%a,,.

4. Translation of Single Step Program S and Automation
Manager Program AM

S = LdJ(Fd A-P, Ta,, ) AM=S"; /d\ (Fq =P, )?

4 v
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Verification Step 2: 44
Consistency Properties in PDL

e Functionality (unique result of computation):
(AM)p < [AM]p (for all propositions p)

e Termination:
-AS (A is the divergence operator)

e other consistency criteria, e.g. confluence
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Termination / Loops

All non-terminating programs caused by
program loops, €.g.:

when F THEN w=b
when F THEN v=e =

W=
when J THEN v=d

when G THEN v=d 4

when H THEN w=a
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Verification Step 3: 44
Termination Property in BOOL

e Preliminary: Proper restriction F|,_,
(T ifv=w,d=¢e

=J1 1fv=wd=e

P ifv=w

w,e
.

allows specification of properties concerning
multiple program states:

Let s,—=L>s.. Then s |=F iff s, |- F|_,.
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Verification Step 3: 44
Termination Property (contd)

Example:
e Potential 2-loop: 5, —L—ss5, —L >y,
e Corresponding rules: when F then v=d,
when G then v=d,
e Then validity of the formula
—-(PV,d0 AF A Gv=d1)
IS a necessary condition for the absence of this 2-loop.

e Actual occurrance of error may depend on rule
evaluation order.
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Verification Step 3: 44
Termination Property (contd)

e In SA ordered evaluation of variables
(x<y<z<...), where x<y denotes that x is
evaluated before vy.

e Extended property indicating absence of 2-loops
considering variable evaluation order:

N\ (Fw,dW:Pw,dw) d _'(Pv,do /\F’\Gv=dl)

w<v,d,,
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Verification Step 4: see
Automatic Theorem Prover

e Formulas generated in verification step 3
provide input for standard ATP program, e.q.

Davis-Putnam style prover (SAT)
BDDs (binary decision diagrams)
e Output is one of:

“no error” resp. list of counterexamples (SAT)

‘no error” resp. formula representing all
counterexamples (BDDs)
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Verification Step 5: T
Simplification of Result

e In case of error,

EF = A (Fw,dw :>Pw,dw) d _'(Pv,do NFEANG

w<v,d,,

Is not valid, but formula representing counterexamples
may be huge.

e Simplification: remove irrelevant variables (not contained
in the 2 rules under consideration) by existential
abstraction in EF:

3X EF
where Y contains all irrelevant variables.

v=d, )
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Results

e Input Formulas:

Computation of resource’s compound status, 3 errors (rule
overlap)

41 rules, 74 variables, =1500 symbols

o SAT

Runtimes for proving non-looping properties: <1 sec.

Formulas for loop errors have relatively large number of models
(270-405) representing individual error cases.

e BDD

Generation time: 1-2 sec.
Generated BDDs have =100-200 nodes.
Simplification reduces number of error cases to 1-3.
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Summary / Conclusion

e Goal:
Error detection in Rule-Based Expert Systems

e Method:

Conversion of consistency properties to SAT

Application of current SAT-checking technology
e Benefits:

Correctness assertions possess high quality

Compared to testing: covers all possible cases
Generates generalized error patterns
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