
Comparing Different
Logic-Based Representations

of Automotive Parts Lists

Carsten Sinz
JKU Linz

Austria

28.08.2006 Carsten Sinz – JKU Linz 2

Overview
 Background: batch configuration in

automotive industry (DaimlerChrysler)
 Order processing in two stages:

1. Configuration
2. Parts list generation

 Challenge: efficient transformation from
orders to parts lists needed
 Compact, intelligible, easily maintainable

 Comparison of 5 such transformations

28.08.2006 Carsten Sinz – JKU Linz 3

Problem Description

P1, P3,
P5, ...

P2, P3,
P4, ...

Motor 1,

Color 20,

Gear shift 2

Motor 2,

Color 21,

Gear shift 3

How to construct
mapping from

configuration domain
to parts list?

28.08.2006 Carsten Sinz – JKU Linz 4

Configuration and
Parts List Generation

 Configuration and parts list generation
typically separated

 Configuration:
 Based on properties, functionalities, features
 Checks feasibility

 Parts list determined by mapping from
orders to parts
 No configuration on parts level

28.08.2006 Carsten Sinz – JKU Linz 5

Order Processing at DaimlerChrysler
 Order processing in two stages:

1. Order completion & consistency check
2. Parts list generation

 Order = Set of Boolean variables (codes)
 Codes represent equipment options
 E.g.: { M1, G2, L, C1, ...,X, Y, ... }

 Steps 1 and 2 controlled by propositional rules
that are stored in database tables
 Examples: G2 ∧ ¬X ⇒ ¬M2,

 if(M1 ∧ Y ∧ ¬G1) select(part10)

28.08.2006 Carsten Sinz – JKU Linz 6

Formal Problem Statement
 Given set C of codes and set P of parts
 How can a parts list mapping M: P(C) → P(P) be

represented?
 Comments:

 Parts list typically decomposed into modules (one for
each assembly position, e.g. mirror of left front door):
M(o) = M1(o) ∪ M2(o) ∪ ... ∪ Mk(o) with
Mi: P(C) → P(Pi) for k assembly positions

 Mapping for each module typically functional, i.e.
Mi: P(C) → Pi, thus M(o) = { Mi(o) | 1≤i≤k }
(parts sets Pi possibly extended by null-part)

28.08.2006 Carsten Sinz – JKU Linz 7

Solution 1: Variant Table

 Explicit part assignment
for all possible (valid)
configurations

 Example:
 3 codes (A,B,C)
 4 parts (P1,...,P4)
 valid configurations:

 at least one of A, B, C
 A and B implies C

 Problem: Table rapidly
grows too large

28.08.2006 Carsten Sinz – JKU Linz 8

Solution 1 Feasible?

 Largest part map for Mercedes E-Class:
 135 codes, 27 different parts at one assembly

position
 Table: would contain (up to)

2135 ≈ 4.36 x 1040 lines
 Consequence: Explicit representation of

variant table infeasible!

28.08.2006 Carsten Sinz – JKU Linz 9

Solution 2: Propositional Encoding
 Implicit (symbolic)

representation of sets
of code-lists

 Pro:
 More compact
 Enables use of efficient

data structures like
BDDs to represent
formulas

 Con: may still be hard
to maintain

28.08.2006 Carsten Sinz – JKU Linz 10

Solution 3a: Propositional Encoding
with Implicit Negation
 Build term (conjunction of

literals) for each row of
variant table, then strip off
negated variables

 Pro:
 Compact in some cases
 Relatively easy to maintain

 Con:
 Evaluation of formulas

requires pre-processing step
 Size: one term for each row

of variant table
 Absorption law not valid

28.08.2006 Carsten Sinz – JKU Linz 11

Solution 3b: Motivation

 „Bird“ example from knowledge
representation:

bird(x) ⇒ flies(x)
bird(x) ∧ Penguin(x)⇒ ¬ flies(x)
bird(x) ∧ Penguin(x) ∧ onPlane(x)⇒ flies(x)

 Problem: rule overlaps
 Solutions:

a) Take most specific rule
b) Avoid rule overlaps

28.08.2006 Carsten Sinz – JKU Linz 12

Solution 3b: Propositional Encoding
with Implicit Exclusion
 Idea: implicitly exclude

overlaps of formulas
 Realization: Conjunctively add

negated terms of other parts’
formulas (if not less specific)

 Pro:
 Relatively compact
 Avoids explicit negations

 Con:
 Relatively hard to understand
 Requires additional decoding

step of formulas

28.08.2006 Carsten Sinz – JKU Linz 13

Solution 4a: Propositional Encoding
with Rule Priority
 Assign evaluation priority to

rules; check formulas in
order of decreasing priority

 Pro:
 Compact representation
 Avoids overlaps

 Con:
 Some rules may never fire

(if more specific than rule
with higher priority)

 May become hard to
maintain if many rules are
involved

28.08.2006 Carsten Sinz – JKU Linz 14

Solution 4b: Cascaded Conditions
 Variant of Solution 4a

(rule priority): all
priorities distinct

 Pro. / Con:
 As with rule priorities

(but less flexible)

Maintenance example:
Assume that { A, B } becomes

constructible, but should
not belect a part.

Which changes are needed?

28.08.2006 Carsten Sinz – JKU Linz 15

Industrial Use

 SAP Automotive:
 Rule priority

 DaimlerChrysler Mercedes cars:
 Prop. encoding with implicit exclusion

28.08.2006 Carsten Sinz – JKU Linz 16

Conclusion
 Parts list mappings are simple from a

theoretical point of view
 Finding the right formalism (apprehensible,

easily maintainable) is not straightforward
 Rule compilation should be considered a

programming task
 Apply software engineering methods: style-

guides, debugging, testing, verification, ...
 Tool support needed

