
Practical Applications of SAT

Carsten Sinz

Institute for Formal Models and Verification

Johannes Kepler University Linz

Linz, Austria

1

Motivation

! (x*y == x+y+674) && (x-6 == 4*(y-6))

! Solution for x, y in Z?

! SW-Verification: Solution in Z mod 232?

! Demo: c32sat

! SAT-based solver / tautology checker for C-

expressions

! Just checked 23!32 ! 7.9!1028 variable assignments
using a state-of-the-art SAT-solver!

2

Part 1:

Industrial Applications

3

Application 1:

Product Configuration

! Configurable products, model lines
! Products assembled out of standardized components

! E.g. computers, cars, telecommunication equipment

! Dependencies between components
! Specified using logical formalism („product overview“)

! Automatic (rule-based) order processing system
! Checks customer"s order, transforms it into a parts list

! Computational problems:
1. Determine valid (constructible) product instance satisfying

• component dependencies

• customer"s restrictions

2. Check consistency of product overview

4

Options available for Mercedes-Benz!s C class: (excerpt, total: 692)

231 garage door opener integrated into interior mirror

280 steering wheel in leather design (two-colored) with chrome clip

550 trailer appliance

581 comfort air-conditioning THERMOTRONIC

671 light metal wheels 4x, 7 spoke design

673 high-capacity battery

772 AMG (sports) styling

921 motor with methyl ester operation mode (bio-diesel)

Restrictions for Mercedes-Benz’s C class: (excerpt, total: 952)

AMG styling (772) cannot be combined with trailer appliance (550).

Comfort air-conditioning (581) requires high-capacity battery (673), except

when combined with gasoline engines with 2.6 or 3.2 liter cylinder capacity.

Case Study: Configuration of

DC"s Mercedes Cars

5

Order Processing Schema for

Mercedes Cars

Checked and extended

order

"
2

Parts list

3

Customer’s order

(specification)

Automatically

extended order

1

? ?

Order completion („supplementation“)

$ Consistency check

% Generation of parts list

6

Supple-

mentation

DaimlerChrysler:

Batch Configuration Algorithm

Parts list

generation

Constructability

check

do

if Z1 then add code c1

|...|

if Zn then add code cn

until no further changes result

for i=1 to n do

if ¬(ci ! Bi) then “error”

for j=1 to k do

if Tj then select part pj

S

C
P

7

Batch Configuration Algorithm:

Translation to SAT

! Typical formula Bi in constructability check:
((-L/(M111+M23+M001/M112+M28/M113)+-

(220/248/289/331/480/481/500/540/611/656/657+956/819/875+-(460/M113)/882/W 10/Y94/Y95/X35/

X59/X62))+-R)+((-L/M113+-X62/M112+M28+-(772/774/X62)/M111+M23+M001+-(280+-
460/772/774/X62))+-R)+((-L/M112+M28+222+223+231+

254+292+423+(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+(955+265+657

+(140A/200A)/956+570+(201A/208A))+809/M112+M28+221+222+231+254+292+(349/460)+423+

(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+955+265+657+(140A/200A)+

800/M112+M28+221+222+231+254+292+(349/460)+423+(460/249+461+551+810)+(524+668+6

34+636/820)+543+581+679+956+570+(201A/208A)+800/M113+231+249+254+265+441+(460/46

1)+(551/460)+(810/460)+(524+668+634+636/820)+543+580A+809/M113+231+249+254+265+(34

9/460)+441+(460/461)+(551/460)+(810/460)+(524+668+634+636/820)+543+580A+800/M111+M2

3+M001+221+231+249+254+292+423+(524+634...
X34/X51/X52/X54/X55/X57/X58/X60/X61/X63/X64))

! Translation to SAT:

1. Propositional Dynamic Logic (PDL)

2. Consistency conditions as SAT problems

(monotonicity of supplementation)

8

Correctness Conditions

! Conditions: with

! B characterizes all constructible, extended orders

! E is a (small) test condition

! Correctness conditions include:

! For each part there is be at least one constructible order

! For each equipment option there is be at least one

constructible order with and one constructible order without it

)()(

)()(:

11

11

nn

nn

BcBc

cZcZ

!""!

"!""!=

L

L B

!

B " E

9

Demo

10

Application 2:

Hardware Verification

! Correctness of HW-designs

! At gate-level

! Properties specified in temporal logic

11

Model Checking (MC)

! Given: hardware description M (finite transition system, model),

property P (in temporal logic, e.g. LTL, CTL)

! Check whether property P holds in M, i.e. whether M is a model

of P ()

! Hardware description M: set of initial states plus transition

relation

! Typical properties P:

! Safety properties: “x always holds” (i.e. in every state

reachable from some distinguished initial states)

! Liveness properties: “there will be a point in time when x
holds” (e.g. a request is answered)

! In “x always holds”: x typically a propositional formula

12

Bounded Model Checking

(BMC)

! Original MC Question:

! Show that “always p” holds (i.e. holds in all reachable states)

! BMC Question:

! Show that “always p” holds on all runs of length #k (for
some k), or formulated (negatedly) as a SAT problem:

Is there a path of length "k from an initial state to a
state where p does not hold?

! Initial states: given as predicate I(s) over the state variables
s = (x1,...,xn)

! Transition relation: given as predicate !(s,s") of state s and
successor state s"

13

BMC as SAT

! Formula to check for satisfiability:

Is there a path of length "k from an initial state to a state
where p does not hold?

! If such a path exists, we have found a counter-example for
“always p”

! Otherwise, we know that no such path of length #k exists; we
then may increase k and check again

14

BMC Example

! Consider a 2-bit counter, counting repeatedly from c=0 to c=2.

Prove that when initally c $ 3, then always c $ 3

! 2 state bits: , counter

! Initial state condition: (i.e., c0 $ 3)

Transition relation: Circuit:

DCDC11

0001

0110

1000

x"0x"1x0x1

si+1Si

15

! Transition relation in form !(s,s"):

! Property p(s):

! SAT-Solver will confirm that property holds for all k.

BMC Example (cont"d)

16

BMC in the Industry

! BMC and SAT techniques widely
accepted nowadays:
! Intel, AMD, IBM, Infineon, ...

! Cadence, ...

! Fully-automated tools: „push-button
technology“

! Also used in conjunction with ATP
methods (e.g. FP verification at Intel)

17

Further Applications

! (Hardware) Equivalence Checking

! Asynchronous circuit synthesis (IBM)

! Software-Verification

! Expert system verification

! Planning (air-traffic control, telegraph routing)

! Scheduling (sport tournaments)

! Finite mathematics (quasigroups)

! Cryptanalysis

18

Part 2:
Explaining the

Success of SAT

19

Complexity

! Well-known: (3-)SAT is NP-complete

! Best known theoretical upper bound (for 3-SAT):

1.473n (Brueggemann, Kern; 2004)

! 100 vars in 1 sec ⇒ 1000 vars in 3.41!10151 secs

! Largest BMC-instance solved at SAT Competition:

>370,000 variables, >7 mio. clauses (< 200 min.)

⇒ Large gap between theoretical and empirical results.
So why this?

20

DPLL-Algorithm

21

Why is the DPLL-Algorithm so

Successful?

! Highly optimized implementations

! Clause learning (no-good learning)

! Fast Boolean constraint propagation
(watched literals data structure)

! Improved (dynamic) variable selection
heuristics (VSIDS, locality considered)

! Rapid random restarts (to overcome heavy-
tail behavior)

22

Tractable SAT Instances

! Tractable subclasses:

! 2-SAT, Horn-SAT, q-Horn-SAT, ... (syntactical)

! Bounded (hyper-)tree-width (structural)

! Do not occur frequently in practice

! Fraction of 2-clauses (2+p-SAT) in Random-3-SAT

! „Structure“ in problem instances

! Implication chains (of 2-clauses)

! Independent components

! Other, graph-based notions of structure

23

SAT Instances as Graphs

! Interaction graph [Rish&Dechter 2000]
(variables as nodes, clauses as edges)

! Factor graph [Kschischang et al. '98,

Braunstein et al. '05]
(bi-partite graph including variable- and clause-vertices)

! Implication graph [Aspvall et al. '79]
(implicational structure, for 2-clauses only)

! Slight variants of these graph representations
(e.g. co-occurrence of literals)

24

Visualization of SAT Instances

! Variables are nodes, clauses are (sets of) edges

! Visual emphasis on 2-clauses:

! Use graph layout algorithms

25

longmult8-B

26

C202-FW

27

random100

28

Demo

29

Summary

! Two industrial applications of SAT:
! Bounded model checking (BMC)

! Product configuration

! Structural analysis:
! Why are SAT-Solvers so successful?

! Future:
! New applications (e.g. SW verification), improved

implementations

! Better understanding of what the really hard
problems are

