Practical Applications of SAT

Carsten Sinz

Institute for Formal Models and Verification Johannes Kepler University Linz Linz, Austria

Motivation

- (x*y == x+y+674) && (x-6 == 4*(y-6))
- Solution for x, y in Z?
- SW-Verification: Solution in Z mod 2³²?
- Demo: c32sat
 - SAT-based solver / tautology checker for Cexpressions
 - Just checked 2^{3·32} ≈ 7.9·10²⁸ variable assignments using a state-of-the-art SAT-solver!

Part 1: Industrial Applications

Application 1: Product Configuration

- Configurable products, model lines
 - Products assembled out of standardized components
 - E.g. computers, cars, telecommunication equipment
- Dependencies between components
 - Specified using logical formalism (*"product overview"*)
- Automatic (rule-based) order processing system
 - Checks customer's order, transforms it into a parts list
- Computational problems:
 - 1. Determine valid (*constructible*) product instance satisfying
 - component dependencies
 - customer's restrictions
 - 2. Check consistency of product overview

Case Study: Configuration of DC's Mercedes Cars

Options available for Mercedes-Benz's C class: (excerpt, total: 692)

231 garage door opener integrated into interior mirror
280 steering wheel in leather design (two-colored) with chrome clip
550 trailer appliance
581 comfort air-conditioning THERMOTRONIC
671 light metal wheels 4x, 7 spoke design

⁶ Restrictions for Mercedes-Benz's C class: (excerpt, total: 952)

AMG styling (772) cannot be combined with trailer appliance (550).

Comfort air-conditioning (581) requires high-capacity battery (673), except when combined with gasoline engines with 2.6 or 3.2 liter cylinder capacity.

Order Processing Schema for Mercedes Cars

① Order completion ("supplementation")

- ② Consistency check
- ③ Generation of parts list

DaimlerChrysler: Batch Configuration Algorithm

do S if Z₁ then add code c₁ Supple-|...| mentation if Z_n then add code c_n until no further changes result for i=1 to n do Constructability if $\neg(c_i \Rightarrow B_i)$ then "error" check for j=1 to k do Parts list if T_i then select part p_i generation

Batch Configuration Algorithm: Translation to SAT

Typical formula B_i in constructability check:

((-L/(M111+M23+M001/M112+M28/M113)+-

(220/248/289/331/480/481/500/540/611/656/657+956/819/875+-(460/M113)/882/W10/Y94/Y95/X35/ X59/X62))+-R)+((-L/M113+-X62/M112+M28+-(772/774/X62)/M111+M23+M001+-(280+-460/772/774/X62))+-R)+((-L/M112+M28+222+223+231+

254+292+423+(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+(955+265+657+(140A/200A)/956+570+(201A/208A))+809/M112+M28+221+222+231+254+292+(349/460)+423+(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+955+265+657+(140A/200A)+800/M112+M28+221+222+231+254+292+(349/460)+423+(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+956+570+(201A/208A)+800/M113+231+249+254+265+441+(460/461)+(551/460)+(524+668+634+636/820)+543+580A+809/M113+231+249+254+265+(349/460)+441+(460/461)+(551/460)+(810/460)+(524+668+634+636/820)+543+580A+800/M111+M23+M001+221+231+249+254+292+423+(524+634....X34/X51/X52/X54/X55/X57/X58/X60/X61/X63/X64))

Translation to SAT:

- 1. Propositional Dynamic Logic (PDL)
- 2. Consistency conditions as SAT problems (monotonicity of supplementation)

Correctness Conditions

- Conditions: $\mathcal{B} \wedge E$ with $\mathcal{B} := (Z_1 \Rightarrow c_1) \wedge \dots \wedge (Z_n \Rightarrow c_n) \wedge (c_1 \Rightarrow B_1) \wedge \dots \wedge (c_n \Rightarrow B_n)$
 - \mathcal{B} characterizes all constructible, extended orders
 - E is a (small) test condition
- Correctness conditions include:
 - For each part there is be at least one constructible order
 - For each equipment option there is be at least one constructible order with and one constructible order without it

Demo

Application 2: Hardware Verification

- Correctness of HW-designs
 - At gate-level
 - Properties specified in temporal logic

Model Checking (MC)

- Given: hardware description *M* (finite transition system, model), property *P* (in temporal logic, e.g. LTL, CTL)
- Check whether property *P* holds in *M*, i.e. whether *M* is a model of $P(M \models P)$
- Hardware description *M*: set of initial states plus transition relation
- Typical properties P:
 - Safety properties: "x always holds" (i.e. in every state reachable from some distinguished initial states)
 - Liveness properties: "there will be a point in time when x holds" (e.g. a request is answered)
- In "x always holds": x typically a propositional formula

Bounded Model Checking (BMC)

- Original MC Question:
 - Show that "always *p*" holds (i.e. holds in all reachable states)
- BMC Question:
 - Show that "always *p*" holds on all runs of length ≤*k* (for some *k*), or formulated (negatedly) as a SAT problem:

Is there a path of length $\leq k$ from an initial state to a state where *p* does not hold?

- Initial states: given as predicate I(s) over the state variables $s = (x_1, ..., x_n)$
- Transition relation: given as predicate τ(s,s') of state s and successor state s'

BMC as **SAT**

Formula to check for satisfiability:

$$I(s_0) \wedge \bigwedge_{i=0}^{k-1} \tau(s_i, s_{i+1}) \wedge \bigvee_{i=0}^k \neg p(s_i)$$

Is there a path of length $\leq k$ from an initial state to a state where *p* does not hold?

- If such a path exists, we have found a counter-example for "always p"
- Otherwise, we know that no such path of length ≤k exists; we then may increase k and check again

BMC Example

- Consider a 2-bit counter, counting repeatedly from c=0 to c=2. Prove that when initally c ≠ 3, then always c ≠ 3
- 2 state bits: $s_i = (x_0^i, x_1^i)$, counter $c_i = 2 \cdot x_1^i + x_0^i$
- Initial state condition: $I(s_0) = \neg (x_0^0 \land x_1^0)$ (i.e., $c_0 \neq 3$) Transition relation: Circuit:

S _i		S _{i+1}	
x ₁	x ₀	x' ₁	x ' ₀
0	0	0	1
0	1	1	0
1	0	0	0
1	1	DC	DC

 $x'_1 = x_0, \ x'_0 = \neg(x_0 \lor x_1)$

BMC Example (cont'd)

- Transition relation in form $\tau(s,s')$: $\tau(s_i, s_{i+1}) = (x_1^{i+1} \Leftrightarrow x_0^i) \land (x_0^{i+1} \Leftrightarrow \neg (x_1^i \lor x_0^i))$
- Property p(s): $p(s_i) = \neg(x_1^i \land x_0^1)$
- SAT-Solver will confirm that property holds for all k.

BMC in the Industry

- BMC and SAT techniques widely accepted nowadays:
 - Intel, AMD, IBM, Infineon, ...
 - Cadence, ...
- Fully-automated tools: "push-button technology"
- Also used in conjunction with ATP methods (e.g. FP verification at Intel)

Further Applications

- (Hardware) Equivalence Checking
- Asynchronous circuit synthesis (IBM)
- Software-Verification
- Expert system verification
- Planning (air-traffic control, telegraph routing)
- Scheduling (sport tournaments)
- Finite mathematics (quasigroups)
- Cryptanalysis

Part 2: Explaining the Success of SAT

Complexity

- Well-known: (3-)SAT is NP-complete
- Best known theoretical upper bound (for 3-SAT): 1.473ⁿ (Brueggemann, Kern; 2004)
 - 100 vars in 1 sec \Rightarrow 1000 vars in 3.41 \cdot 10¹⁵¹ secs
- Largest BMC-instance solved at SAT Competition: >370,000 variables, >7 mio. clauses (< 200 min.)
- ⇒ Large gap between theoretical and empirical results. So why this?

DPLL-Algorithm

```
boolean DPLL(ClauseSet S)
```

```
while ( S contains a unit clause {L} ) {
    delete from S clauses containing L; // unit-subsumption
    delete \neg L from all clauses in S; // unit-resolution
}
if ( \Box \in S ) return false; // empty clause?
while ( S contains a pure literal L )
    delete from S all clauses containing L;
if ( S = \emptyset ) return true; // no clauses?
choose a literal L occurring in S; // case-splitting
if ( DPLL(S \cup \{\{L\}\}\} ) return true; // first branch
else if ( DPLL(S \cup \{\{\neg L\}\}\} ) return true; // second branch
else return false;
```

Why is the DPLL-Algorithm so Successful?

- Highly optimized implementations
 - Clause learning (no-good learning)
 - Fast Boolean constraint propagation (*watched literals* data structure)
 - Improved (dynamic) variable selection heuristics (VSIDS, locality considered)
 - Rapid random restarts (to overcome heavytail behavior)

Tractable SAT Instances

- Tractable subclasses:
 - 2-SAT, Horn-SAT, q-Horn-SAT, ... (syntactical)
 - Bounded (hyper-)tree-width (structural)
 - Do not occur frequently in practice
- Fraction of 2-clauses (2+p-SAT) in Random-3-SAT
- "Structure" in problem instances
 - Implication chains (of 2-clauses)
 - Independent components
 - Other, graph-based notions of structure

SAT Instances as Graphs

- Interaction graph [Rish&Dechter 2000] (variables as nodes, clauses as edges)
- Factor graph [Kschischang et al. '98, Braunstein et al. '05] (bi-partite graph including variable- and clause-vertices)
- Implication graph [Aspvall et al. '79] (implicational structure, for 2-clauses only)
- Slight variants of these graph representations (e.g. co-occurrence of literals)

Visualization of SAT Instances

- Variables are nodes, clauses are (sets of) edges
- Visual emphasis on 2-clauses:

Use graph layout algorithms

Demo

Summary

- Two industrial applications of SAT:
 - Bounded model checking (BMC)
 - Product configuration
- Structural analysis:
 - Why are SAT-Solvers so successful?
- Future:
 - New applications (e.g. SW verification), improved implementations
 - Better understanding of what the really hard problems are