
On the Use of Extended Resolution
in Propositional Reasoning

Carsten Sinz

Institute for Formal Models and Verification
Johannes Kepler University Linz

Linz, Austria

January 2006

1

Overview

 Motivation
 Proof Generation in SAT-Solvers
 Extended Resolution for Compressing Proofs
 Extended Resolution for BDD Constructions
 Conclusion

2

Part I:
Motivation

3

Background
 Propositional logic used in many real-world

applications today:
 Hardware & software verification, planning, FPGA

routing, product configuration
 Efficient decision procedures available

 SAT-Solvers can handle instances with 100,000
variables and millions of clauses

 Justification of results needed
 To locate errors, for debugging, ...

4

Options available for Mercedes-Benz’s C class: (excerpt, total: 692)

231 garage door opener integrated into interior mirror
280 steering wheel in leather design (two-colored) with chrome clip
550 trailer appliance
581 comfort air-conditioning THERMOTRONIC
671 light metal wheels 4x, 7 spoke design
673 high-capacity battery
772 AMG (sports) styling
921 motor with methyl ester operation mode (bio-diesel)Restrictions for Mercedes-Benz’s C class: (excerpt, total: 952)

AMG styling (772) cannot be combined with trailer appliance (550).

Comfort air-conditioning (581) requires high-capacity battery (673), except
when combined with gasoline engines with 2.6 or 3.2 liter cylinder capacity.

Example: Product Configuration

5

General Setting
 Propositional logic SAT problem

 Formulae in CNF:
with and

 Question: Is there an assignment to the variables in V such that
F evaluates to true?

 If yes, a model is found
 Delivers information to the user (solution, counter-example)
 Can easily be checked for correctness

 If no, no model is found
 No additional information for the user
 Can we trust the SAT-Solver program? Is there really no

model? What kind of „certificate“ can we obtain?

!

F = C
1
" ..."C

m

!

C
i
= l

i,1
" ..." l

i,ki

!

li, j " x,¬x{ x " V}

6

SAT Applications: Interpretation of
Unsatisfiable Instances
 FPGA routing: channel unroutable

 What is the reason for this? Where is the “hot spot”?
 Planning: no plan with the given restrictions

 Which restrictions could be changed?
 Product configuration: no product instance with the

given specification
 How should the specification be changed?

 Finite mathematics (e.g. Quasigroup existence
problems): no structure of a given size
 Why is this the case? (resp.: Is there really no structure of this

size or is the SAT-Solver faulty?)

7

Solution
 Generate proofs!

 (Refutation) Proofs serve as certificates for
unsatisfiability

 Can be checked easily (polynomial in the length of
the proof)

 Resolution-based SAT-Solvers can generate proofs
„as a by-product“

 Many SAT-Solvers resolution based
 Thus easily extendable to generate resolution proofs

8

Part II:
Proof Generation in
SAT-Solvers

9

SAT-Solvers
 Predominant algorithm : DPLL (Davis-Putnam-Logemanm-Loveland)

boolean DPLL(ClauseSet S)
{

while (S contains a unit clause {L}) { // unit propagation
delete from S all clauses containing L; // u. subsumption
delete ¬L from all clauses in S; // u. resolution

}
if (∅ ∈ S) return false;
if (S = ∅) return true;
choose a literal L occurring in S;
if (DP(S ∪ {{L}}) return true;
else return DP(S ∪ {{¬L}});

}

10

SAT-Solvers: Recent Extensions
 Recent (influential) enhancements:

 Clause (no-good) learning [MarquesSilva&Sakallah 1996]
 Fast (lazy) Boolean constraint propagation (watched literals

data structure) [Moskewicz et al. 2001]
 Improved (dynamic) variable selection heuristics (VSIDS,

locality considered) [Moskewicz et al. 2001]
 Rapid random restarts (to overcome heavy-tail behavior) [Gomes

et al. 1998]
 Clause set compression (deletion of subsumed clauses) [Biere

2004]

 Also important: instances occurring in practice are
highly structured

11

longmult8-B

12

Enhanced DPLL Algorithm
with Learning
boolean DPLL-Enhanced
{

forever {
ok = propagate_units();
if (!ok) { // conflicting assignment

generate_and_add_conflict_clause();
new_level = backtrack();
if (new_level < 0) return false;

}
if no more open variables return true;
decide(); // assign value to open literal

}
}

13

Lemma Generation: Example

adding the conflict-induced
(learned) clause avoids
repeated search

!

(u ,m ,h)

(u , f ,m)

(f ,g ,h)

(y, f)

(f ,g)

M

(x,a)

(x,b,a)

(x,a,b,c)

(a,d)

(b,d,e)

(c,d,e)

M

!

UP: f ,g=1

h=0

!

y=0
!

UP:a,b,c=1

d,e=0

!

x=1

!

(f ,g ,h)
!

(f ,g)

!

(y, f)

!

UP:i, j=1

k,l=0

!

z=1

!

(u ,m ,h)

!

UP:m=0

!

u=1

!

(u , f ,m)

conflict-induced
clause:

!

(y,u)

14

Resolution Proofs for
Generated Lemmas

m=0

m=1

u=1

h=0

f=1

g=1

y=0

!

(u, f ,m)

!

(u,m,h)

!

(f ,g,h)

!

(f ,g)

!

(y, f)

reason side

conflict side

!

(u, f ,m)

!

(u,m,h)

!

(f ,g,h)

!

(f ,g)

!

(y, f)

resolution proof:

!

(u, f ,h)

ordering:

!

(u, f ,m)

!

(u,m,h)

!

(f ,g,h)

!

(f ,g)

!

(y, f)

!

(u, f ,g)

!

(u, f)

!

(u,y)

15

Proofs in the
DPLL Algorithm with Learning
 Resolution proofs for lemmas are trivial

 input (i.e. also linear)
 regular (i.e. all resolution variables are distinct)
(Notion defined in [Beame et al. 2003])

 Resolution refutation for F is generated by
 Taking proofs of all lemmas used to derive the empty

clause
 Proof of a lemma (resp. involved input clauses)

also called a proof chain

16

State of the Art
 Proof („trace“) generation built into some

SAT-Solvers
 Chaff, MiniSAT, booleforce

 Proofs may become large!
 929 MB for a proof trace of PHP11 with booleforce

 Core extraction can alleviate situation

17

Core Extraction
 Idea: determine a smallest possible clause set

that is still unsatisfiable
 MUS (minimal unsatisfiable subformula)

• Approximation algorithm [Bruni&Sassano 2000]
• Based on iteratedly solving modified SAT instances [Oh et

al. 2004]
 Core extraction

• Based on resolution of learned clauses [Zhang&Malik 2003]
• Core contains clauses in the lemma’s proof chains
• May be applied iteratively
• Also implemented in booleforce

18

Challenging Problems

 How can smaller proofs be obtained?

 Proofs for non-resolution decision procedures
(e.g. Binary Decision Diagrams)

Idea: Use stronger proof systems to represent
proofs

19

Part III:
Extended Resolution for
Compressing Proofs

20

Extended Resolution (ER)
 Resolution Rule + Extension Rule
 Resolution Rule:

 Extension Rule:
 Add clauses for definition x ↔ F

• x new variable (i.e. not occurring in original formula or
previous definitions)

• F arbitrary formula (original paper: only F = l1 ∧ l2 allowed)
 First proposed by Tseitin in 1970

!

C ˙ " {l} D ˙ " { l}

C"D

21

General Ideas of
Proof Compression
 Merge proof chains
 Exploit symmetries

 Related ideas proposed in the context of first-
order logic:
 Dynamically add definitions [Eder 1990]
 Quantifier introduction [Egly 1992]
 Function introduction [Baaz&Leitsch 1992; Egly 1993]
 Substitution formulae (δm-resolution) [Peltier 2005]

22

Merging Proof Chains
 Observation: Many proof chains differ by only a

few clauses, e.g.
 (-28 -22)(25 26 27 28 29 30)(-11 -29)(5 11)(26 25 -5 27)(-25 -31)

(-15 -27)(-26 -38)(37 38 39)(-37 -31)(-15 -39)(-6 -30)(5 4 6)
(25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -31), and

 (-28 -22)(25 26 27 28 29 30)(-11 -29)(5 11)(26 25 -5 27)(-26 -32)
(-15 -27)(-25 -37)(37 38 39)(-38 -32)(-15 -39)(-6 -30)(5 4 6)
(25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -32)

 are proof lanes in the proof of PHP6

 Idea: Re-order proof steps and merge common
parts of proof chains

23

Merging Proof Chains:
Constellations

common postfix common prefix

mixed cases also possible

24

Merging Proof Chains:
Common Prefix

C1 C2

Ci
Ci+1

Cn

R

H

C1 C2

Ci
Di+1

Dm

S

H

C1 C2

Ci

Di+1

Dm

Ci+1

Cn

R S

H

merging easily possible: equivalent to three shorter chains
(no ER required)

25

Merging Proof Chains:
Common Postfix

C1 C2

Ci
E1

Ek

R

A

D1 D2

Dj
E1

Ek

S

B

merging not easily possible: ER required

?
Assume A = (a1,...,ap,c1,...,cr)
 and B = (b1,...,bq,c1,...,cr)
 (with ci common literals of A,B; none of the
 ai or bi must be resolved below A,B)

Define w1 ↔ (a1∨...∨ap)
 and w2 ↔ (b1∨...∨bq)
 and w ↔ w1 ∧ w2

Further, let AB* = (w,c1,...,cr).

Then A,B |—ER AB*
 and AB*,E1,...,Ek |—ER
 RS*=R[a1,...,ap/w]
 (=S[b1,...,bq/w])

(as none of the ai or bi is resolved below A,B)
 and RS* |—ER R, S

We thus have a (possibly shorter) ER proof for R and S.

26

Exploiting Symmetries
 Assume F symmetric, i.e. F = π(F) for some

permutation π of the literals.
 Idea:

 Instead of many proofs for symmetric clauses C,
π(C), π2(C)..., derive C’s symmetric closure
 SymCl(C) = C ∧ π(C) ∧ π2(C) ∧ π3(C) ∧ ...
with one ER proof

 Advantage: only one proof chain for C, π(C), π2(C), ...
 Work in progress

27

28

Part IV:
Extended Resolution Proofs
out of BDD Computations

29

Binary Decision Diagrams (BDDs)
 BDDs: Graph-based data

structure to represent
Boolean functions
 Based on Shannon

expansion:

 Isomorphic sub-graphs
shared

 Canonical representation
when variable order is fixed

!

f = (x" f
x=1
)# (¬x" f

x= 0
)

x

z

y0

01

1

0 1

0 1

10

BDD representing
formula

!

x " (y #¬z)

nodes

30

BDDs (cont´d)
 Common in HW verification
 BDDs typically built bottom-up from smaller

ones using BDD constructors (BDD_and,
BDD_or,...)

 BDDs as SAT-Solver (for S = {C1,...,Cm}):
1. Convert clauses Ci to BDDs ci
2. Using BDD_and, construct BDDs hi for partial

conjunctions C1 ∧ ... ∧ Ci
3. S is unsatisfiable iff hm=0

31

Proofs from BDD Constructions
 Algorithm:

1. Generate BDDs for clauses ci and partial conjunctions hi as
indicated

2. Add definitions for all used nodes: f ↔ ITE(x,f0,f1)
3. Generate ER proofs for
a) S |—ER ci

b) S |—ER c1∧c2→ h2, S |—ER hi-1∧ci→ hi

c) S |—ER hm

 Parts a) and c) easy, b) by recursion
 Details in [Sinz&Biere 2006]: first experimental results

promising (trace size reduced from 929 MB to 8 MB for PHP11)

32

Proofs from BDD Constructions
Recursive Step

With node definitions:

33

Conclusion
 Shown two applications of Ext. Resolution:

1. Proof compression for DPLL-based SAT-Solvers
2. ER-Proofs from BDD constructions

 Applications in
 HW & SW verification, configuration, ...
 “Certificate” generation for SAT-Solvers

 Outlook
 Extension to QBF
 Symmetry

