On the Use of Extended Resolution in Propositional Reasoning

Carsten Sinz

Institute for Formal Models and Verification Johannes Kepler University Linz Linz, Austria

January 2006

Overview

- Motivation
- Proof Generation in SAT-Solvers
- Extended Resolution for Compressing Proofs
- Extended Resolution for BDD Constructions
- Conclusion

Part I: Motivation

Background

- Propositional logic used in many real-world applications today:
 - Hardware & software verification, planning, FPGA routing, product configuration
- Efficient decision procedures available
 - SAT-Solvers can handle instances with 100,000 variables and millions of clauses
- Justification of results needed
 - To locate errors, for debugging, ...

Example: Product Configuration

Options available for Mercedes-Benz's C class: (excerpt, total: 692)

- 231 garage door opener integrated into interior mirror
- 280 steering wheel in leather design (two-colored) with chrome clip
- 550 trailer appliance
- 581 comfort air-conditioning THERMOTRONIC
- 671 light metal wheels 4x, 7 spoke design
- 673 high-capacity battery
- 772 AMG (sports) styling

Restrictions for Mercedes-Benz's C class: (excerpt, total: 952)

AMG styling (772) cannot be combined with trailer appliance (550).

Comfort air-conditioning (581) requires high-capacity battery (673), except when combined with gasoline engines with 2.6 or 3.2 liter cylinder capacity.

General Setting

- Propositional logic SAT problem
 - Formulae in CNF: $F = C_1 \land ... \land C_m$ with $C_i = l_{i,1} \lor ... \lor l_{i,k_i}$ and $l_{i,j} \in \{x, \neg x \mid x \in V\}$
 - Question: Is there an assignment to the variables in V such that F evaluates to true?
- If yes, a model is found
 - Delivers information to the user (solution, counter-example)
 - Can easily be checked for correctness
- If no, no model is found
 - No additional information for the user
 - Can we trust the SAT-Solver program? Is there really no model? What kind of "certificate" can we obtain?

SAT Applications: Interpretation of Unsatisfiable Instances

- FPGA routing: channel unroutable
 - What is the reason for this? Where is the "hot spot"?
- Planning: no plan with the given restrictions
 - Which restrictions could be changed?
- Product configuration: no product instance with the given specification
 - How should the specification be changed?
- Finite mathematics (e.g. Quasigroup existence problems): no structure of a given size
 - Why is this the case? (resp.: Is there really no structure of this size or is the SAT-Solver faulty?)

Solution

- Generate proofs!
 - (Refutation) Proofs serve as certificates for unsatisfiability
 - Can be checked easily (polynomial in the length of the proof)
 - Resolution-based SAT-Solvers can generate proofs "as a by-product"
- Many SAT-Solvers resolution based
 - Thus easily extendable to generate resolution proofs

Part II: Proof Generation in SAT-Solvers

SAT-Solvers

Predominant algorithm : DPLL (Davis-Putnam-Logemanm-Loveland)

```
boolean DPLL(ClauseSet S)
```

```
while (S contains a unit clause {L}) {
     delete from S all clauses containing L; // u. subsumption
     delete \neg L from all clauses in S;
```

```
// unit propagation
// u. resolution
```

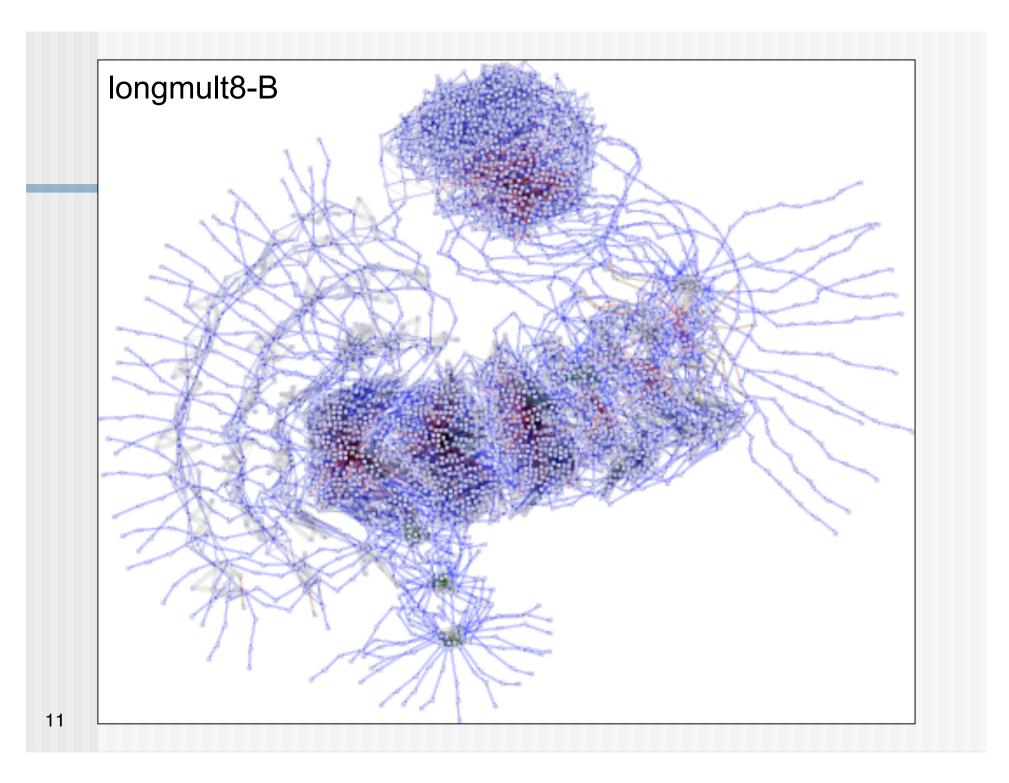
```
if (\emptyset \in S) return false;
if (S = \varnothing) return true;
choose a literal L occurring in S;
if (DP(S \cup {{L}}) return true;
else return DP(S \cup \{\{\neg L\}\});
```

}

{

SAT-Solvers: Recent Extensions

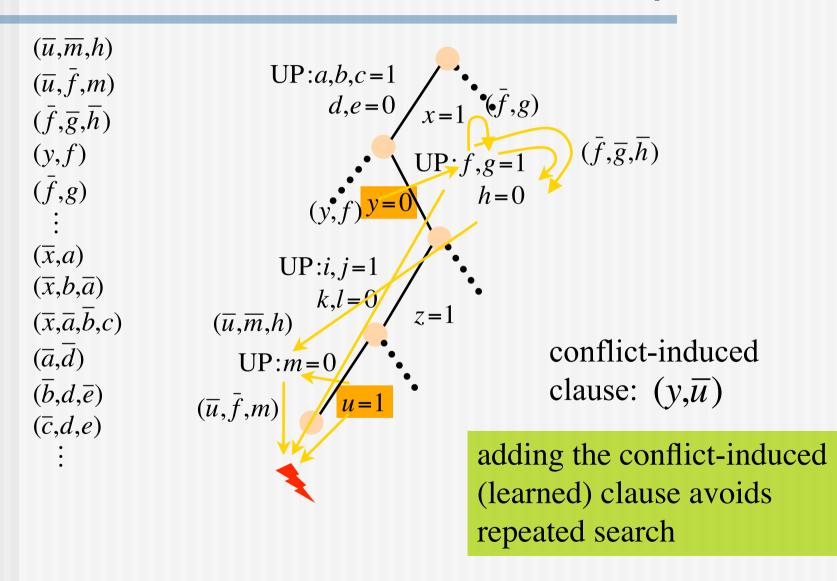
- Recent (influential) enhancements:
 - Clause (no-good) learning [MarquesSilva&Sakallah 1996]
 - Fast (lazy) Boolean constraint propagation (*watched literals* data structure) [Moskewicz *et al.* 2001]
 - Improved (dynamic) variable selection heuristics (VSIDS, locality considered) [Moskewicz *et al.* 2001]
 - Rapid random restarts (to overcome heavy-tail behavior) [Gomes et al. 1998]
 - Clause set compression (deletion of subsumed clauses) [Biere 2004]
- Also important: instances occurring in practice are highly structured



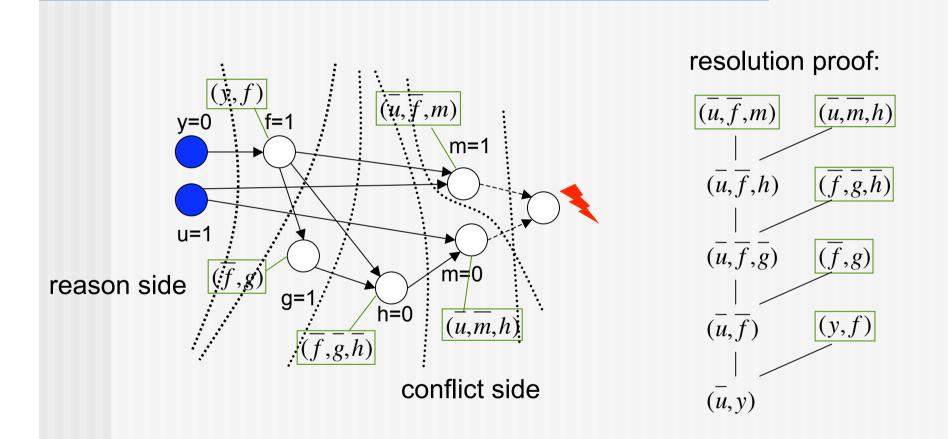
Enhanced DPLL Algorithm with Learning

```
boolean DPLL-Enhanced
{
  forever {
       ok = propagate_units();
       if (!ok) { // conflicting assignment
               generate_and_add_conflict_clause();
               new_level = backtrack();
               if (new_level < 0) return false;
       }
       if no more open variables return true;
       decide();
                       // assign value to open literal
```

Lemma Generation: Example



Resolution Proofs for Generated Lemmas



ordering: (y,f) (\overline{f},g) $(\overline{f},\overline{g},\overline{h})$ $(\overline{u},\overline{m},h)$ $(\overline{u},\overline{f},m)$

Proofs in the DPLL Algorithm with Learning

- Resolution proofs for lemmas are *trivial*
 - input (i.e. also linear)
 - regular (i.e. all resolution variables are distinct)
 (Notion defined in [Beame *et al.* 2003])
- Resolution refutation for F is generated by
 - Taking proofs of all lemmas used to derive the empty clause
- Proof of a lemma (resp. involved input clauses) also called a *proof chain*

State of the Art

- Proof ("trace") generation built into some SAT-Solvers
 - Chaff, MiniSAT, booleforce
- Proofs may become large!
 - 929 MB for a proof trace of PHP₁₁ with booleforce
- Core extraction can alleviate situation

Core Extraction

- Idea: determine a smallest possible clause set that is still unsatisfiable
 - MUS (minimal unsatisfiable subformula)
 - Approximation algorithm [Bruni&Sassano 2000]
 - Based on iteratedly solving modified SAT instances [Oh *et al.* 2004]
 - Core extraction
 - Based on resolution of learned clauses [Zhang&Malik 2003]
 - Core contains clauses in the lemma's proof chains
 - May be applied iteratively
 - Also implemented in booleforce

Challenging Problems

How can smaller proofs be obtained?

 Proofs for non-resolution decision procedures (e.g. Binary Decision Diagrams)

Idea: Use stronger proof systems to represent proofs

Part III: Extended Resolution for Compressing Proofs

Extended Resolution (ER)

- Resolution Rule + Extension Rule
- Resolution Rule:

 $\frac{C \dot{\cup} \{l\} \qquad D \dot{\cup} \{\overline{l}\}}{C \cup D}$

- Extension Rule:
 - Add clauses for definition $x \leftrightarrow F$
 - *x* new variable (i.e. not occurring in original formula or previous definitions)
 - *F* arbitrary formula (original paper: only $F = l_1 \wedge l_2$ allowed)
 - First proposed by Tseitin in 1970

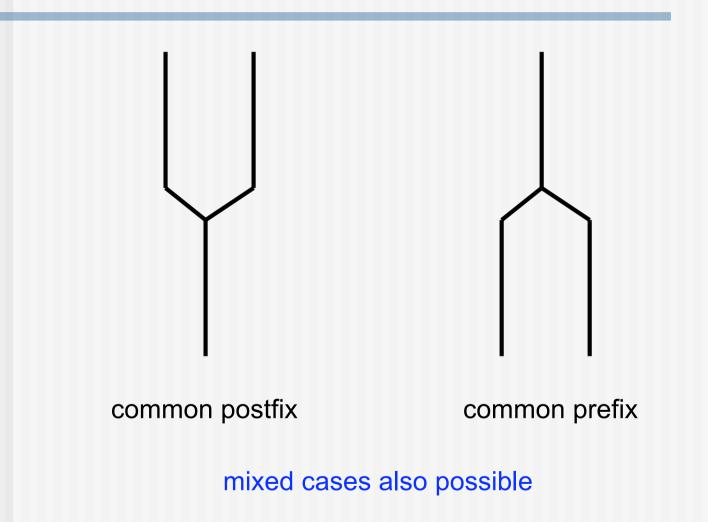
General Ideas of Proof Compression

- Merge proof chains
- Exploit symmetries
- Related ideas proposed in the context of firstorder logic:
 - Dynamically add definitions [Eder 1990]
 - Quantifier introduction [Egly 1992]
 - Function introduction [Baaz&Leitsch 1992; Egly 1993]
 - Substitution formulae (δ^m -resolution) [Peltier 2005]

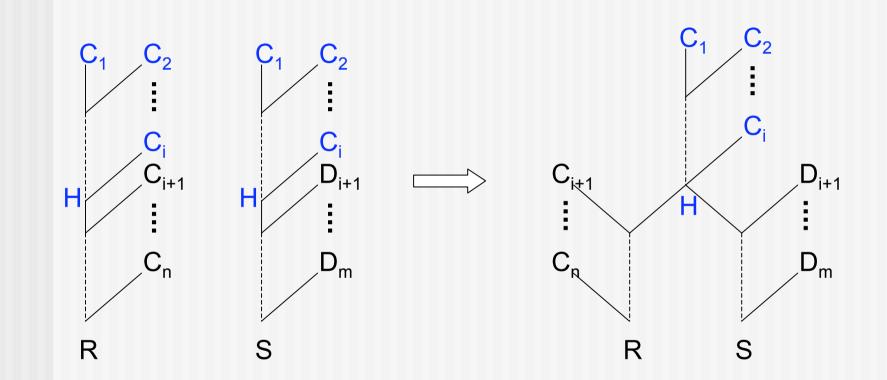
Merging Proof Chains

- Observation: Many proof chains differ by only a few clauses, e.g.
 - (-28 -22)(25 26 27 28 29 30)(-11 -29)(5 11)(26 25 -5 27)(-25 -31)
 (-15 -27)(-26 -38)(37 38 39)(-37 -31)(-15 -39)(-6 -30)(5 4 6)
 (25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -31), and
 - (-28 -22)(25 26 27 28 29 30)(-11 -29)(5 11)(26 25 -5 27)(-26 -32)
 (-15 -27)(-25 -37)(37 38 39)(-38 -32)(-15 -39)(-6 -30)(5 4 6)
 (25 27 26 -4 29)(24 22)(-6 -24) to prove (-15 -32)
 - are proof lanes in the proof of PHP₆
- Idea: Re-order proof steps and merge common parts of proof chains

Merging Proof Chains: Constellations

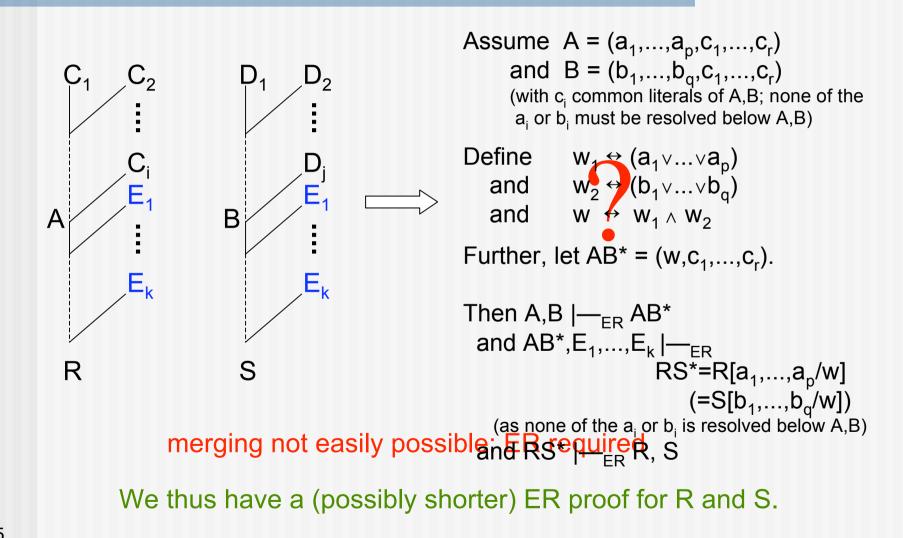


Merging Proof Chains: Common Prefix



merging easily possible: equivalent to three shorter chains (no ER required)

Merging Proof Chains: Common Postfix



Exploiting Symmetries

- Assume *F* symmetric, i.e. $F = \pi(F)$ for some permutation π of the literals.
- Idea:
 - Instead of many proofs for symmetric clauses C, π(C), π²(C)..., derive C's symmetric closure SymCl(C) = C ∧ π(C) ∧ π²(C) ∧ π³(C) ∧ ... with one ER proof
 - Advantage: only one proof chain for C, $\pi(C)$, $\pi^2(C)$, ...
- Work in progress



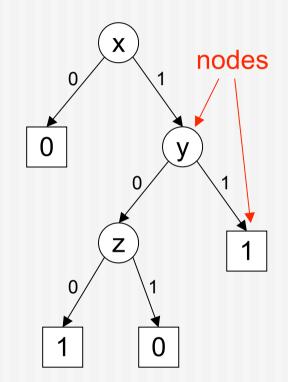
Part IV: Extended Resolution Proofs out of BDD Computations

Binary Decision Diagrams (BDDs)

- BDDs: Graph-based data structure to represent Boolean functions
 - Based on Shannon expansion:

$$f = (x \to f|_{x=1}) \land (\neg x \to f|_{x=0})$$

- Isomorphic sub-graphs shared
- Canonical representation when variable order is fixed



BDD representing formula $x \land (y \lor \neg z)$

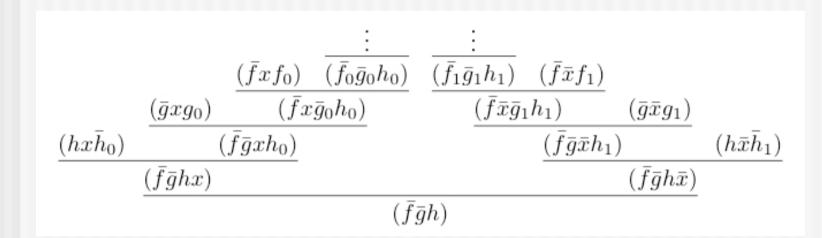
BDDs (cont'd)

- Common in HW verification
- BDDs typically built bottom-up from smaller ones using BDD constructors (BDD_and, BDD_or,...)
- BDDs as SAT-Solver (for $S = \{C_1, \dots, C_m\}$):
 - 1. Convert clauses C_i to BDDs c_i
 - 2. Using BDD_and, construct BDDs h_i for partial conjunctions $C_1 \land ... \land C_i$
 - 3. S is unsatisfiable iff $h_m=0$

Proofs from BDD Constructions

- Algorithm:
 - Generate BDDs for clauses c_i and partial conjunctions h_i as indicated
 - 2. Add definitions for all used nodes: $f \leftrightarrow ITE(x, f_0, f_1)$
 - 3. Generate ER proofs for
 - *a)* S |—_{ER} C_i
 - b) $S \mid __{ER} c_1 \land c_2 \rightarrow h_2$, $S \mid __{ER} h_{i-1} \land c_i \rightarrow h_i$
 - c) $S \mid _{ER} h_m$
- Parts a) and c) easy, b) by recursion
- Details in [Sinz&Biere 2006]: first experimental results promising (trace size reduced from 929 MB to 8 MB for PHP₁₁)

Proofs from BDD Constructions Recursive Step



With node definitions:

$f \leftrightarrow x ? f_1 : f_0$	$(\bar{f}\bar{x}f_1)(\bar{f}xf_0)(f\bar{x}\bar{f}_1)(fx\bar{f}_0)$
$g \leftrightarrow x ? g_1 : g_0$	$(\bar{g}\bar{x}g_1)(\bar{g}xg_0)(g\bar{x}\bar{g}_1)(gx\bar{g}_0)$
$h \leftrightarrow x ? h_1 : h_0$	$(\bar{h}\bar{x}h_1)(\bar{h}xh_0)(h\bar{x}\bar{h}_1)(hx\bar{h}_0)$

Conclusion

- Shown two applications of Ext. Resolution:
 - 1. Proof compression for DPLL-based SAT-Solvers
 - 2. ER-Proofs from BDD constructions
- Applications in
 - HW & SW verification, configuration, ...
 - "Certificate" generation for SAT-Solvers
- Outlook
 - Extension to QBF
 - Symmetry